IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Opencv之边缘检测卷积算子(sobel、scharr、Kirsch、Robinson) -> 正文阅读

[人工智能]Opencv之边缘检测卷积算子(sobel、scharr、Kirsch、Robinson)

学习资料参考:

张平.《OpenCV算法精解:基于Python与C++》.[Z].北京.电子工业出版社.2017.


Sobel边缘检测

sobel算子及其分离性

该算子由两部分组成:
在这里插入图片描述
sobel算子是在一个坐标轴上进行非归一化的高斯平滑,在另一个坐标轴方向上进行差分处理。n*n的sobel算子由平滑算子和差分算子full卷积而成,其中n为奇数。
如5阶的非归一化的高斯平滑算子为
在这里插入图片描述
该平滑算子的中的数值从左到右其实为 4 = n - 1 = 5 - 1的二项式指数的展开系数。
而与该算子对应的差分算子为
在这里插入图片描述
该差分算子的数值从左到右其实为,令3 = n - 2 = 5 - 2 的二项式展开系数,即
在这里插入图片描述
然后两侧补0,
在这里插入图片描述
接着进行后向差分即可。
在这里插入图片描述

而构建sobel算子满足的普遍性的规律满足以下总结:
在这里插入图片描述

python实现
import math
from scipy import signal
import numpy as np
import cv2


# 计算平滑算子
def pascalSmooth(n):
    pascalSmooth = np.zeros((1, n), np.float32)
    for i in range(n):
        pascalSmooth[0][i] = math.factorial(n - 1) / (math.factorial(i) * math.factorial(n - 1 - i))
    return pascalSmooth


# 计算差分算子
def pascalDiff(n):
    pascalDiff = np.zeros((1, n), np.float32)
    pascalSmooth_previous = pascalSmooth(n - 1)
    for i in range(n):
        if i == 0:
            pascalDiff[0][i] = pascalSmooth_previous[0][i]
        elif i == n - 1:
            pascalDiff[0][i] = -pascalSmooth_previous[0][i - 1]
        else:
            pascalDiff[0][i] = pascalSmooth_previous[0][i] - pascalSmooth_previous[0][i - 1]
    return pascalDiff


# 基于前两个函数构建x轴与y轴的算子
def getSobelKernel(n):
    pascalSmoothKernel = pascalSmooth(n)
    pascalDiffKernel = pascalDiff(n)
    # 水平方向的卷积核
    sobel_kernel_x = signal.convolve2d(pascalSmoothKernel.transpose(), pascalDiffKernel, mode='full')
    # 垂直方向的卷积核
    sobel_kernel_y = signal.convolve2d(pascalSmoothKernel, pascalDiffKernel.transpose(), mode='full')
    return sobel_kernel_x, sobel_kernel_y


# 图像与算子进行卷积
def sobel(image, n):
    rows, cols = image.shape
    # 得到平滑算子和差分算子
    pascalSmoothKernel = pascalSmooth(n)
    pascalDiffKernel = pascalDiff(n)
    # 水平方向上的卷积
    imgae_sobel_x = signal.convolve2d(image, pascalSmoothKernel.transpose(), mode='same')
    imgae_sobel_x = signal.convolve2d(imgae_sobel_x, pascalDiffKernel, mode='same')
    # 垂直方向的卷积
    image_sobel_y = signal.convolve2d(image, pascalSmoothKernel, mode='same')
    image_sobel_y = signal.convolve2d(image_sobel_y, pascalDiffKernel.transpose(), mode='same')
    return imgae_sobel_x, image_sobel_y


if __name__ == '__main__':
    image = cv2.imread(r"C:\Users\1\Pictures\test1.jpg", 0)
    image_sobel_x, image_sobel_y = sobel(image, 7)
    edge = np.sqrt(np.power(image_sobel_x, 2.0) + np.power(image_sobel_y, 2.0))
    edge = edge / np.max(edge)
    edge = np.power(edge, 1)
    edge *= 255
    edge = edge.astype(np.uint8)
    cv2.imshow("image", image)
    cv2.imshow("edge", edge)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

运行结果
在这里插入图片描述


scharr边缘检测

scharr算子

该算子与Prewitt边缘检测算子和3阶的sobel边缘检测算子类似,由两个卷积核(不可分离)组成:
在这里插入图片描述

python实现
def scharr(I, _boundary='symm'):
    # I与scharr_x的same卷积
    scharr_x = np.array([[3, 0, -3], [10, 0, -10], [3, 0, -3]], np.float32)
    I_x = signal.convolve2d(I, scharr_x, mode='same', boundary='symm')
    # I与scharr_y的same卷积
    scharr_y = np.array([[3, 10, 3], [0, 0, 0], [-3, -10, -3]], np.float32)
    I_y = signal.convolve2d(I, scharr_y, mode='same', boundary='symm')
    return I_x, I_y

kirsch、Robinson边缘检测

kirsch算子由8个卷积核组成:
在这里插入图片描述
图像与每一个核进行卷积,然后取绝对值作为对应方向上的边缘强度的量化。对8个卷积的结果取绝对值,然后再对应值位置取最大值作为最后输出的边缘强度。

Robinson算子也是由8个卷积核组成:
在这里插入图片描述
原理与kirsch算子类似。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-10 11:54:11  更:2022-05-10 11:56:47 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 6:22:11-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码