.numpy()
Tensor.numpy() 将Tensor转化为ndarray,这里的Tensor可以是标量或者向量(与item()不同)转换前后的dtype不会改变
a = torch.tensor([[1.,2.]])
a_numpy = a.numpy()
.item()
将一个Tensor变量转换为python标量(int float等)常用于用于深度学习训练时,将loss值转换为标量并加,以及进行分类任务,计算准确值值时需要
optimizer.zero_grad()
outputs = model(data)
loss = F.cross_entropy(outputs, label)
acc = (outputs.argmax(dim=1) == label).sum().cpu().item() / len(labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_acc += acc
.cpu()
将数据的处理设备从其他设备(如.cuda()拿到cpu上),不会改变变量类型,转换后仍然是Tensor变量。
.detach()和.data(重点)
.detach()就是返回一个新的tensor,并且这个tensor是从当前的计算图中分离出来的。但是返回的tensor和原来的tensor是共享内存空间的。 举个例子来说明一下detach有什么用。 如果A网络的输出被喂给B网络作为输入, 如果我们希望在梯度反传的时候只更新B中参数的值,而不更新A中的参数值,这时候就可以使用detach()
a = A(input)
a = a.deatch()
out = B(a)
loss = criterion(out, labels)
loss.backward()
Tensor.data和Tensor.detach()一样, 都会返回一个新的Tensor, 这个Tensor和原来的Tensor共享内存空间,一个改变,另一个也会随着改变,且都会设置新的Tensor的requires_grad属性为False。这两个方法只取出原来Tensor的tensor数据, 丢弃了grad、grad_fn等额外的信息。
tensor.data是不安全的, 因为 x.data 不能被 autograd 追踪求微分 这是为什么呢?我们对.data进行进一步探究
import torch
a = torch.tensor([4., 5., 6.], requires_grad=True)
print("a", a)
out = a.sigmoid()
print("out", out)
print(out.requires_grad)
result = out.data
result.zero_()
print("result", result)
print("out", out)
out.sum().backward()
print(a.grad)
'''运行结果为:
a tensor([4., 5., 6.], requires_grad=True)
out tensor([0.9820, 0.9933, 0.9975], grad_fn=<SigmoidBackward0>)
True
result tensor([0., 0., 0.])
out tensor([0., 0., 0.], grad_fn=<SigmoidBackward0>)
tensor([0., 0., 0.])
'''
由于更改分离之后的变量值result,导致原来的张量out的值也跟着改变了,但是这种改变对于autograd是没有察觉的,它依然按照求导规则来求导,导致得出完全错误的导数值却浑然不知。
那么我们继续看看.detach() 可以看到将.data改为.detach()后程序立马报错,阻止了非法的修改,安全性很高
我们需要记住的就是:
- .data 是一个属性,二.detach()是一个方法;
- .data 是不安全的,.detach()是安全的。
|