IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 瑞芯微RV1126/1109开发流程之模型转换 -> 正文阅读

[人工智能]瑞芯微RV1126/1109开发流程之模型转换

1、环境搭建(PC端ubuntu16.04搭建rknn环境)

(1)安装anaconda环境(为了便于管理自己的环境建议安装,安装步骤请自行搜索,本人安装anaconda版本为Anaconda3-2019-Linux-x86_64.sh)

(2)下载rknn安装包

关于版本问题:建议安装瑞芯微更新的最新版本,本人之前用1.6在模型转换过程中出现莫名错误。

下载链接https://github.com/rockchip-linux/rknn-toolkit

本人安装(版本1.7.1)链接:

????????1)源码链接https://pan.baidu.com/s/1r7zg8MPWIKagUkAguYTyhA 提取码:ajbk

????????2)集成开发环境链接https://pan.baidu.com/s/1JH6HFfM9VLIynV_pqw-jRw 提取码:7fks

说明:红色框是需要安装的rknn的sdk开发环境,绿色框为瑞芯微官方提供的开发source源码

(3)安装rknn环境

1)创建虚拟环境

conda create -n rk_env_1.7 python=3.6

2)安装依赖

pip install tensorflow-gpu==1.14.0

pip install torch==1.5.1

pip install torchvision==0.4.0

pip install mxnet-cu101==1.5.0

pip3 install opencv-python

pip3 install gluoncv

3)安装rknn包

pip install rknn_toolkit-1.7.1-cp36-cp36m-linux_x86_64.whl

?4)测试是否安装成功

2、模型转换

(1)yolov5s.pt转yolov5.onnx

Yolov5版本一直再不停的更换,瑞芯微使用的是yolov5 5.0版本

工程源码以及下载链接:https://github.com/ultralytics/yolov5/releases

百度云链接:(待补充)

ps:转换成onnx过程中修改yolo.py,修改如下:

(2)转换成onnx命令

 export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1

?(3)onnx转换从成rknn

命令:

python yolov5_rknn.py

?源码:

import os
import sys
import numpy as np
from rknn.api import RKNN

ONNX_MODEL = 'yolov5s.onnx'
RKNN_MODEL = 'yolov5s.rknn'

if __name__ == '__main__':

    # Create RKNN object
    rknn = RKNN(verbose=True)

    # pre-process config
    print('--> config model')
    rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], reorder_channel='0 1 2', target_platform='rv1126',
    quantized_dtype='asymmetric_affine-u8', optimization_level=3,   output_optimize=1)
    print('done')

    print('--> Loading model')
    ret = rknn.load_onnx(model=ONNX_MODEL)
    if ret != 0:
        print('Load model  failed!')
        exit(ret)
    print('done')

    # Build model
    print('--> Building model')
    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')#,pre_compile=True
    if ret != 0:
        print('Build yolov5s failed!')
        exit(ret)
    print('done')

    # Export rknn model
    print('--> Export RKNN model')
    ret = rknn.export_rknn(RKNN_MODEL)
    if ret != 0:
        print('Export yolov5s.rknn failed!')
        exit(ret)
    print('done')

    rknn.release()

3、可视化推理测试rknn模型

import os
import urllib
import traceback
import time
import sys
import numpy as np
import cv2
from rknn.api import RKNN


RKNN_MODEL = 'yolov5s.rknn'
IMG_PATH = 'dog.jpg'

QUANTIZE_ON = True

BOX_THRESH = 0.5
NMS_THRESH = 0.6
IMG_SIZE = 640

CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
            "fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
            "bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
            "baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
            "spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
            "pottedplant","bed","diningtable","toilet ","tvmonitor","laptop	","mouse	","remote ","keyboard ","cell phone","microwave ",
            "oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")


def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def xywh2xyxy(x):
    # Convert [x, y, w, h] to [x1, y1, x2, y2]
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y
def resize_postprocess(x, offset_x, offset_y):
    # Convert [x1, y1, x2, y2] to [x1, y1, x2, y2]
    y = np.copy(x)
    y[:, 0] = x[:, 0]  / offset_x  # top left x
    y[:, 1] = x[:, 1]  / offset_y  # top left y
    y[:, 2] = x[:, 2]  / offset_x  # bottom right x
    y[:, 3] = x[:, 3]  / offset_y  # bottom right y
    return y
def process(input, mask, anchors):

    anchors = [anchors[i] for i in mask]
    grid_h, grid_w = map(int, input.shape[0:2])

    box_confidence = sigmoid(input[..., 4])
    box_confidence = np.expand_dims(box_confidence, axis=-1)

    box_class_probs = sigmoid(input[..., 5:])

    box_xy = sigmoid(input[..., :2])*2 - 0.5

    col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
    row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
    col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
    row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
    grid = np.concatenate((col, row), axis=-1)
    box_xy += grid
    box_xy *= int(IMG_SIZE/grid_h)

    box_wh = pow(sigmoid(input[..., 2:4])*2, 2)
    box_wh = box_wh * anchors

    box = np.concatenate((box_xy, box_wh), axis=-1)

    return box, box_confidence, box_class_probs

def filter_boxes(boxes, box_confidences, box_class_probs):
    """Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
    # Arguments
        boxes: ndarray, boxes of objects.
        box_confidences: ndarray, confidences of objects.
        box_class_probs: ndarray, class_probs of objects.
    # Returns
        boxes: ndarray, filtered boxes.
        classes: ndarray, classes for boxes.
        scores: ndarray, scores for boxes.
    """
    box_classes = np.argmax(box_class_probs, axis=-1)
    box_class_scores = np.max(box_class_probs, axis=-1)
    pos = np.where(box_confidences[...,0] >= BOX_THRESH)


    boxes = boxes[pos]
    classes = box_classes[pos]
    scores = box_class_scores[pos]

    return boxes, classes, scores

def nms_boxes(boxes, scores):
    """Suppress non-maximal boxes.
    # Arguments
        boxes: ndarray, boxes of objects.
        scores: ndarray, scores of objects.
    # Returns
        keep: ndarray, index of effective boxes.
    """
    x = boxes[:, 0]
    y = boxes[:, 1]
    w = boxes[:, 2] - boxes[:, 0]
    h = boxes[:, 3] - boxes[:, 1]

    areas = w * h
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)

        xx1 = np.maximum(x[i], x[order[1:]])
        yy1 = np.maximum(y[i], y[order[1:]])
        xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
        yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])

        w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
        h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
        inter = w1 * h1

        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= NMS_THRESH)[0]
        order = order[inds + 1]
    keep = np.array(keep)
    return keep


def yolov5_post_process(input_data):
    masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
    anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
              [59, 119], [116, 90], [156, 198], [373, 326]]

    boxes, classes, scores = [], [], []
    for input,mask in zip(input_data, masks):
        b, c, s = process(input, mask, anchors)
        b, c, s = filter_boxes(b, c, s)
        boxes.append(b)
        classes.append(c)
        scores.append(s)

    boxes = np.concatenate(boxes)
    boxes = xywh2xyxy(boxes)
    classes = np.concatenate(classes)
    scores = np.concatenate(scores)

    nboxes, nclasses, nscores = [], [], []
    for c in set(classes):
        inds = np.where(classes == c)
        b = boxes[inds]
        c = classes[inds]
        s = scores[inds]
        keep = nms_boxes(b, s)
        nboxes.append(b[keep])
        nclasses.append(c[keep])
        nscores.append(s[keep])

    if not nclasses and not nscores:
        return None, None, None

    boxes = np.concatenate(nboxes)
    classes = np.concatenate(nclasses)
    scores = np.concatenate(nscores)

    return boxes, classes, scores

def draw(image, boxes, scores, classes):
    """Draw the boxes on the image.
    # Argument:
        image: original image.
        boxes: ndarray, boxes of objects.
        classes: ndarray, classes of objects.
        scores: ndarray, scores of objects.
        all_classes: all classes name.
    """
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        print('class: {}, score: {}'.format(CLASSES[cl], score))
        print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
        top = int(top)
        left = int(left)
        right = int(right)
        bottom = int(bottom)

        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
        cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
                    (top, left - 6),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.6, (0, 0, 255), 2)


def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)
def letter_box_postprocess(x, scalingfactor, xy_correction):

    y = np.copy(x)
    y[:, 0] = (x[:, 0]-xy_correction[0])  / scalingfactor  # top left x
    y[:, 1] = (x[:, 1]-xy_correction[1])  / scalingfactor  # top left y
    y[:, 2] = (x[:, 2]-xy_correction[0])  / scalingfactor  # bottom right x
    y[:, 3] = (x[:, 3]-xy_correction[1])  / scalingfactor  # bottom right y
    return y
def get_file(filepath):
    templist = []
    with open(filepath, "r") as f:
        for item in f.readlines():
            templist.append(item.strip())
    return templist
if __name__ == '__main__':

    # Create RKNN object
    rknn = RKNN()
    image_process_mode = "letter_box"
    print("image_process_mode = ", image_process_mode)

    if not os.path.exists(RKNN_MODEL):
        print('model not exist')
        exit(-1)

    # Load ONNX model
    print('--> Loading model')
    ret = rknn.load_rknn(RKNN_MODEL)
    if ret != 0:
        print('Load rknn model failed!')
        exit(ret)
    print('done')

    # init runtime environment
    print('--> Init runtime environment')
    ret = rknn.init_runtime()
    # ret = rknn.init_runtime('rk180_8', device_id='1808')
    if ret != 0:
        print('Init runtime environment failed')
        exit(ret)
    print('done')
    image_list = get_file("test_image.txt")
    for image_path in image_list:
        # Set inputs
        image = cv2.imread(image_path)
        image_name = image_path.split("/")[-1]
        img_height = image.shape[0]
        img_width = image.shape[1]
        # img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
        img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        if image_process_mode == "resize":
            img = cv2.resize(img,(IMG_SIZE, IMG_SIZE))
        elif image_process_mode == "letter_box":
            img, scale_factor, correction = letterbox(img)
        # Inference
        print('--> Running model')
        outputs = rknn.inference(inputs=[img])
        

        # post process
        input0_data = outputs[0]
        input1_data = outputs[1]
        input2_data = outputs[2]

        input0_data = input0_data.reshape([3,-1]+list(input0_data.shape[-2:]))
        input1_data = input1_data.reshape([3,-1]+list(input1_data.shape[-2:]))
        input2_data = input2_data.reshape([3,-1]+list(input2_data.shape[-2:]))

        input_data = list()
        input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
        input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
        input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
        


        boxes, classes, scores = yolov5_post_process(input_data)
        if image_process_mode == "resize":
            scale_h = IMG_SIZE / img_height
            scale_w = IMG_SIZE / img_width
            boxes = resize_postprocess(boxes, scale_w, scale_h)
        elif image_process_mode == "letter_box":
            boxes = letter_box_postprocess(boxes, scale_factor[0], correction)


        # img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        if boxes is not None:
            draw(image, boxes, scores, classes)
        cv2.imwrite("./" + image_name, image)
    rknn.release()

ps:本人对瑞芯微给的rknn测试demo程序做了修改-官方demo只给出了对图片resize的预处理方式且后处理并未还原到原始图片尺寸的大小;本人已经加入了resize和letterbox方式且不同的预处理会有不同的后处理方式

可视化测试结果:

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-12 16:27:40  更:2022-05-12 16:28:25 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/1 22:37:42-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码