IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> pytorch中如何给网络添加mask -> 正文阅读

[人工智能]pytorch中如何给网络添加mask

深度学习中,我们经常会遇到需要添加mask的场景,如:

  • nlp中为了长度对齐,需要补齐长度,但在计算attention时会将补齐位置mask掉从而不参与attention计算;
  • mask相关的预训练任务,如MLM、MAE等,需要mask掉被遮盖的token,以完成预测的预训练任务;
  • swin中,在做shift操作后,为了防止原本物理位置不相邻的区域产生交互,需要进行mask attention。
  • 计算loss时想忽略掉一些不想用来计算该loss的样本。

样例

在attention操作中,在计算attn softmax前,将被mask位置的logits设置为一个很小的数,如-10000,在计算softmax后,就会抑制掉这些位置的作用,代码如下:

class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., with_qkv=True):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5  # 分母根号d
        self.with_qkv = with_qkv
        if self.with_qkv:
           self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
           self.proj = nn.Linear(dim, dim)
           self.proj_drop = nn.Dropout(proj_drop)
        self.attn_drop = nn.Dropout(attn_drop)

    def forward(self, x, attention_mask=None):
        B, N, C = x.shape
        if self.with_qkv:
           qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
           q, k, v = qkv[0], qkv[1], qkv[2]
        else:
           qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
           q, k, v  = qkv, qkv, qkv

        attn = (q @ k.transpose(-2, -1)) * self.scale
        if attention_mask is not None:
            attention_mask = attention_mask.to(dtype=attn.dtype)
            attention_mask = (1.0 - attention_mask) * -10000.0
            attn = attn + attention_mask
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        if self.with_qkv:
           x = self.proj(x)
           x = self.proj_drop(x)
        return x

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-12 16:27:40  更:2022-05-12 16:28:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/1 23:30:26-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码