| |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| -> 人工智能 -> 39_OpenCV关于用任意线性滤波器做卷积的操作 -> 正文阅读 |
|
|
[人工智能]39_OpenCV关于用任意线性滤波器做卷积的操作 |
|
目录 3. 生成卷积核cv::getDerivKernel()和cv::getGaussianKernel() ???????OpenCv允许使用一个真实存在的核进行卷积操作。 理论上,只要用一个数组表示一个核,然后放进一个函数,就可以用来卷积了。实际情况中,一些不起眼的地方会在很大程度上影响到性能,可分解的矩阵通常会产生这种影响,如下:
?一个可分核可以理解成两个一维核,在卷积时,先调用x内核,然后再调用y内核。两个矩阵进行卷积所产生的消耗可以用两个矩阵的面积之积近似。这样,一个n x n的核对面积为A的图像进行卷积所需的时间是An2。但是如果分解成n x 1和1 x n的两个核,那么代价就是An + An = 2An,大大提高了卷积计算的效率,只要n不小于3,这种计算方式能提高效率,并且n越大,越明显。 1. 用cv::filter2D()进行卷积对一幅图像进行卷积的操作是十分巨大的,第一感觉大概是图像中的像素数量乘以卷积核中的像素数,如此复杂的操作导致没有人愿意通过使用for循环和一堆指针去计算卷积,OpenCv完成并优化这些操作,使用的函数是cv::filter2D(),函数原型:
使用cv::filter2D()时,先创建一个适当大小的数组,然后设置好内部的系数,然后将它和源图像以及目标图像一起传入cv::filter2D()。 2. 通过cv::sepFilter2D()使用可分核如果参与卷积的核是可分核,那么先将其分解为两个一维核,然后传递到OpenCv中计算,会获得最佳的计算性能。OpenCv提供函数cv::sepFilter2D()实现该功能,该函数与cv::filter2D()相似,只是在核的接收上有差异。函数原型:
3. 生成卷积核cv::getDerivKernel()和cv::getGaussianKernel()OpenCv还提供了几个用于生成常用卷积核的函数,cv::getDerivKernel()用于生成Sobel核和Scharr核,cv::getGaussianKernel()用于生成高斯核。 cv::getDerivKernel()函数原型如下:
cv::getDerivKernel()的结果放在数组kx和ky中,导数核Sobel和Scharr核是可以分解的。这也是函数返回两个核的原因,返回的两个核中,一个是大小为1 x ksize的行向量,另一个是大小为ksize x 1的列向量。这两个数组由x、y方向的求导顺序dx和dy计算而来。导数核永远都是正方形,ksize是一个整数,可以为1、3、5、7或cv::SCHARR。normalize决定cv::getDerivKernel()是否将核规范化。如果目标是浮点型图像,normalize应该设置为真;如果目标是整型数组,不要设置为真,以免精度丢失。最后一个参数ktype表示滤波器的类型(默认kx核ky的类型,ktype可以是CV_32F和CV_64F。 cv::getGaussianKernel()函数原型:
高斯滤波器使用的核是由cv::getGaussianKernel()生成。与导数核相同,高斯核也是可分的。因此cv::getGaussianKernel()计算一个ksize x 1的数组作为结果,ksize是奇数。sigma是近似高斯分布的标准差,高斯分布矩阵的系数通过下式计算:
系数α在滤波器需要规范化的时候才起作用,sigma=-1时将自动计算ksize。 |
|
|
|
|
| 上一篇文章 下一篇文章 查看所有文章 |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| 360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年12日历 | -2025/12/6 11:11:58- |
|
| 网站联系: qq:121756557 email:121756557@qq.com IT数码 |