IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 目标检测模型---SSD -> 正文阅读

[人工智能]目标检测模型---SSD

1.SSD网络模型

SSD全称为Single Shot MultiBox Detector,一种one-stage目标检测模型,其网络结构图为:
在这里插入图片描述
1. SSD模型的主干网络采用VGG网络模块,并进行一些改进:

  1. 将VGG16的FC6层和FC7层转变为卷积层(原用于分类)
  2. 去除所有的Dropout层的FC8层
  3. 新增加Conv6层、Conv7层、Conv8层、Conv9层

2. SSD模型采用的特征图为:(与图中编号有差别)

  1. Conv4的第三次卷积的特征:3838512
  2. Conv7卷积的特征:19191024
  3. Conv8的第二次卷积的特征:1010512
  4. Conv9的第二次卷积的特征:55256
  5. Conv10的第二次卷积的特征:33256
  6. Conv11的第二次卷积的特征:11256

SSD模型采用的有效特征层共6个,用于进行检测框的预测和目标分类。对每个有效特征层进行如下的操作:一次num_anchors x 4的卷积和一次num_anchors x num_classes的卷积。

num_classes为数据集总的类别数加上背景类别。
num_anchors为该特征层每一个特征点所拥有的先验框的数量。对于上述的六个特征层来说,每个特征层中的每个特征点对应的先验框数量为{4,6,6,6,4,4}。

那么有:所有的特征层对应的预测结果的shape如下
在这里插入图片描述
并且每个特征层的先验框(box)的数量及总量为:
在这里插入图片描述

SSD模型的实现代码为:

class SSD300(nn.Module):
    def __init__(self, num_classes, base, backbone_name, pretrained=False):
        super(SSD300, self).__init__()
        self.num_classes = num_classes
        self.base = base
        self.backbone_name = backbone_name
        if self.backbone_name == 'vgg':
            print('using vgg backbone')
            self.vgg = vgg(self.base, pretrained)
            self.extras = add_extras(1024, self.backbone_name)
            self.L2Norm = L2Norm(512, 20)
            mbox = [4, 6, 6, 6, 4, 4]

            loc_layers = []
            conf_layers = []

            backbone_source = [21, -1]
            """
            在SSD中vgg网络模块获得的特征层里
            第21层和第33层可以用于进行回归预测和分类预测
            分别是conv4-3和conv7的输出
            """
            for k, v in enumerate(backbone_source):
                loc_layers += [nn.Conv2d(self.vgg[v].out_channels, mbox[k] * 4,
                                         kernel_size=(3, 3),
                                         padding=1)]

                conf_layers += [nn.Conv2d(self.vgg[v].out_channels,
                                          mbox[k] * num_classes,
                                          kernel_size=(3, 3),
                                          padding=1)]
            """
            在SSD中add_extras网络模块的特征层中
            第1层、第三层、第五层、第七层可以用于进行回归预测和分类预测
            其大小分别为(10, 10, 512)、(5, 5, 256)、(3, 3, 256)、(1, 1, 256)
            """
            for k, v in enumerate(self.extras[1::2], 2):
                loc_layers += [nn.Conv2d(v.out_channels,
                                         mbox[k] * 4,
                                         kernel_size=(3, 3),
                                         padding=1)]

                conf_layers += [nn.Conv2d(v.out_channels,
                                          mbox[k] * num_classes,
                                          kernel_size=(3, 3),
                                          padding=1)]
        else:
            print('using mobilenetv2 backbone')
            self.mobilenet = mobilenet_v2(pretrained).features
            self.extras = add_extras(1280, self.backbone_name)
            self.L2Norm = L2Norm(96, 20)
            mbox = [6, 6, 6, 6, 6, 6]

            loc_layers = []
            conf_layers = []

            backbone_source = [13, -1]

            for k, v in enumerate(backbone_source):
                loc_layers += [nn.Conv2d(self.mobilenet[v].out_channels,
                                         mbox[k] * 4,
                                         kernel_size=(3, 3),
                                         padding=1)]
                conf_layers += [nn.Conv2d(self.mobilenet[v].out_channels,
                                          mbox[k] * num_classes,
                                          kernel_size=(3, 3),
                                          padding=1)]
            for k, v in enumerate(self.extras, 2):
                loc_layers += [nn.Conv2d(v.out_channels,
                                         mbox[k] * 4,
                                         kernel_size=(3, 3),
                                         padding=1)]
                conf_layers += [nn.Conv2d(v.out_channels,
                                          mbox[k] * num_classes,
                                          kernel_size=(3, 3),
                                          padding=1)]
        self.loc = nn.ModuleList(loc_layers)
        self.conf = nn.ModuleList(conf_layers)

    def forward(self, x):
        # ---------------------------#
        #   x是300,300,3
        # ---------------------------#
        sources = list()
        loc = list()
        conf = list()

        # ---------------------------#
        #   获得conv4_3的内容
        #   shape为38,38,512
        # ---------------------------#
        if self.backbone_name == "vgg":
            for k in range(23):
                x = self.vgg[k](x)
        else:
            for k in range(14):
                x = self.mobilenet[k](x)
        # ---------------------------#
        #   conv4_3的内容
        #   需要进行L2标准化
        # ---------------------------#
        s = self.L2Norm(x)
        sources.append(s)

        # ---------------------------#
        #   获得conv7的内容
        #   shape为19,19,1024
        # ---------------------------#
        if self.backbone_name == "vgg":
            for k in range(23, len(self.vgg)):
                x = self.vgg[k](x)
        else:
            for k in range(14, len(self.mobilenet)):
                x = self.mobilenet[k](x)

        sources.append(x)
        # -------------------------------------------------------------#
        #   在add_extras获得的特征层里
        #   第1层、第3层、第5层、第7层可以用来进行回归预测和分类预测。
        #   shape分别为(10,10,512), (5,5,256), (3,3,256), (1,1,256)
        # -------------------------------------------------------------#
        for k, v in enumerate(self.extras):
            x = F.relu(v(x), inplace=True)
            if self.backbone_name == "vgg":
                if k % 2 == 1:
                    sources.append(x)
            else:
                sources.append(x)

        # -------------------------------------------------------------#
        #   为获得的6个有效特征层添加回归预测和分类预测
        # -------------------------------------------------------------#
        for (x, l, c) in zip(sources, self.loc, self.conf):
            loc.append(l(x).permute(0, 2, 3, 1).contiguous())
            conf.append(c(x).permute(0, 2, 3, 1).contiguous())

        # -------------------------------------------------------------#
        #   进行reshape方便堆叠
        # -------------------------------------------------------------#
        loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
        conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
        # -------------------------------------------------------------#
        #   loc会reshape到batch_size, num_anchors, 4
        #   conf会reshap到batch_size, num_anchors, self.num_classes
        # -------------------------------------------------------------#
        output = (
            loc.view(loc.size(0), -1, 4),
            conf.view(conf.size(0), -1, self.num_classes),
        )
        return output

VGG网络实现:

base = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
        512, 512, 512]

def vgg(pretrained=False):
    layers = []
    in_channels = 3
    for v in base:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        elif v == 'C':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=(3, 3), padding=1)
            layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    # 19, 19, 512 -> 19, 19, 512 
    pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
    # 19, 19, 512 -> 19, 19, 1024
    conv6 = nn.Conv2d(512, 1024, kernel_size=(3, 3), padding=6, dilation=(6, 6))
    # 19, 19, 1024 -> 19, 19, 1024
    conv7 = nn.Conv2d(1024, 1024, kernel_size=(1, 1))
    layers += [pool5, conv6,
               nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]

    model = nn.ModuleList(layers)
    if pretrained:
        state_dict = load_state_dict_from_url("https://download.pytorch.org/models/vgg16-397923af.pth",
                                              model_dir="./model_data")
        state_dict = {k.replace('features.', ''): v for k, v in state_dict.items()}
        model.load_state_dict(state_dict, strict=False)
    return model

扩展网络模块实现:

def add_extras(in_channels, backbone_name):
    layers = []
    if backbone_name == 'vgg':
        # Block 6
        # 19,19,1024 -> 19,19,256 -> 10,10,512
        layers += [nn.Conv2d(in_channels, 256, kernel_size=(1, 1), stride=(1, 1))]
        layers += [nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=1)]

        # Block 7
        # 10,10,512 -> 10,10,128 -> 5,5,256
        layers += [nn.Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))]
        layers += [nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=1)]

        # Block 8
        # 5,5,256 -> 5,5,128 -> 3,3,256
        layers += [nn.Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))]
        layers += [nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))]

        # Block 9
        # 3,3,256 -> 3,3,128 -> 1,1,256
        layers += [nn.Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))]
        layers += [nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))]
    else:
        layers += [InvertedResidual(in_channels, 512, stride=2, expand_ratio=0.2)]
        layers += [InvertedResidual(512, 256, stride=2, expand_ratio=0.25)]
        layers += [InvertedResidual(256, 256, stride=2, expand_ratio=0.5)]
        layers += [InvertedResidual(256, 64, stride=2, expand_ratio=0.25)]

    return nn.ModuleList(layers)

2. 先验框的准备(default box//Prior box)

Prior box是指实际训练中用于训练的Default box,即Default box是一种概念,Prior box则是实际的选取。

训练过程中,当一张图片送入模型后获得各个特征层(feature map),那么对于正样本来说,需要先将prior box与ground truth box进行匹配,若匹配则该prior box包含某个真实目标,但距离完整目标的ground truth box还存在差距,而训练的目的就是保证default box的分类confidence的同时将prior box尽可能回归到ground truth box。

Defalut box生成规则:
对于每个特征层(feature map)上的每个特征点,将其中点作为中心,生成一系列同心的default box。此外,中心点的坐标会乘以step,相当于从feature map位置映射回原图位置。特征层的default box数量与aspect_ratios有关。

SSD模型:

# 先验框的长边比例
# [1, 2] -> [1, 1, 2, 1/2]
# [1, 2, 3] -> [1, 1, 2, 1/2, 3, 1/3]
aspect_ratios = [[1, 2], [1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2], [1, 2]]

对于每个特征层来说,根据其对应的aspect_ratio,会有两个正方形及不等的长方形。

规定default box的边长为anchors_size = [30, 60, 111, 162, 213, 264, 315]
对于6中特征层,会有6中不同的[min_size, max_size]的组合。

那么, default box边长的计算方式为:

  1. 小正方形的边长为: m i n _ s i z e min\_size min_size
  2. 大正方形的边长为: m i n _ s i z e × m a x _ s i z e \sqrt{min\_size \times max\_size} min_size×max_size ?
  3. 长方形默认框的height为: 1 a s p e c t _ r a t i o × m i n _ s i z e \frac{1}{\sqrt{aspect\_ratio}} \times min\_size aspect_ratio ?1?×min_size
  4. 长方形默认框的height为: a s p e c t _ r a t i o × m i n _ s i z e \sqrt{aspect\_ratio} \times min\_size aspect_ratio ?×min_size

对于default box的[min_size, max_size],是由如下的方式计算而来的。

#coding:utf-8
import math
 
min_dim = 300   #######维度
# conv4_3 ==> 38 x 38
# fc7 ==> 19 x 19
# conv6_2 ==> 10 x 10
# conv7_2 ==> 5 x 5
# conv8_2 ==> 3 x 3
# conv9_2 ==> 1 x 1
mbox_source_layers = ['conv4_3', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'conv9_2'] #####prior_box来源层,可以更改。很多改进都是基于此处的调整。
# in percent %
min_ratio = 20 ####这里即是论文中所说的Smin=0.2,Smax=0.9的初始值,经过下面的运算即可得到min_sizes,max_sizes。具体如何计算以及两者代表什么,请关注我的博客SSD详解。这里产生很多改进。
max_ratio = 90
##math.floor()函数表示:求一个最接近它的整数,它的值小于或等于这个浮点数。
step = int(math.floor((max_ratio - min_ratio) / (len(mbox_source_layers) - 2)))####取一个间距步长,即在下面for循环给ratio取值时起一个间距作用。可以用一个具体的数值代替,这里等于17。
print('step:',step)
min_sizes = []  ###经过以下运算得到min_sizes和max_sizes。
max_sizes = []
for ratio in range(min_ratio, max_ratio + 1, step):  ####从min_ratio至max_ratio+1每隔step=17取一个值赋值给ratio。注意xrange函数的作用。
#####min_sizes.append()函数即把括号内部每次得到的值依次给了min_sizes。
  min_sizes.append(min_dim * ratio / 100.)
  print(min_sizes)
  max_sizes.append(min_dim * (ratio + step) / 100.)
min_sizes = [min_dim * 10 / 100.] + min_sizes ## 在min_sizes前拼接上30
max_sizes = [min_dim * 20 / 100.] + max_sizes
 ###steps即计算卷积层产生的prior_box距离原图的步长,先验框中心点的坐标会乘以step,相当于从feature map位置映射回原图位置,
 ###比如conv4_3输出特征图大小为38*38,而输入的图片为300*300,所以38*8约等于300,所以映射步长为8。这是针对300*300的训练图片。
steps = [8, 16, 32, 64, 100, 300] 
aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
print('min_sizes:',min_sizes)
print('max_sizes:',max_sizes)

那么,先验框的准备为:

class AnchorBox:
    def __init__(self, input_shape, min_size, max_size=None, aspect_ratios=None):
        # 获取输入图片的大小, 300*300
        self.input_shape = input_shape
        # 先验框的短边
        self.min_size = min_size
        # 先验框的长边
        self.max_size = max_size
        # 先验框的长边比例
        # [1, 2] -> [1, 1, 2, 1/2]
        # [1, 2, 3] -> [1, 1, 2, 1/2, 3, 1/3]
        self.aspect_ratios = []
        for ar in aspect_ratios:
            self.aspect_ratios.append(ar)
            self.aspect_ratios.append(1.0 / ar)

    def call(self, layer_shape):
        # 获取输入特征层的宽和高, 比如38*38
        layer_height = layer_shape[0]
        layer_width = layer_shape[1]
        # 获取输入图片的宽和高
        img_height = self.input_shape[0]
        img_width = self.input_shape[1]

        box_widths, box_heights = [], []
        # self.aspect_ratios一般有两个值:[1, 1, 2, 1/2];[1, 1, 2, 1/2, 3, 1/3]
        for ar in self.aspect_ratios:
            # 首先添加较小的正方形
            if ar == 1 and len(box_widths) == 0:
                box_widths.append(self.min_size)
                box_heights.append(self.min_size)
            # 然后添加较大的正方形
            elif ar == 1 and len(box_widths) > 0:
                box_widths.append(np.sqrt(self.min_size * self.max_size))
                box_heights.append(np.sqrt(self.min_size * self.max_size))
            # 添加长方形
            elif ar != 1:
                box_widths.append(self.min_size * np.sqrt(ar))
                box_heights.append(self.min_size / np.sqrt(ar))
        # 获取所有先验框的1/2的宽高
        box_widths = 0.5 * np.array(box_widths)
        box_heights = 0.5 * np.array(box_heights)
        # 获取每一个特征层对应的步长
        step_x = img_width / layer_width
        step_y = img_height / layer_height
        # 生成网格中心,并构建网络
        # --------------------------------------------------- #
        linx = np.linspace(0.5 * step_x, img_width - 0.5 * step_x, layer_width)
        liny = np.linspace(0.5 * step_y, img_height - 0.5 * step_y, layer_height)

        centers_x, centers_y = np.meshgrid(linx, liny)
        centers_x = centers_x.reshape(-1, 1)
        centers_y = centers_y.reshape(-1, 1)

        # 每一个先验框需要两个(centers_x, centers_y),前一个用于计算左上角,后一个用于计算右下角
        num_anchors = len(self.aspect_ratios)
        anchor_boxes = np.concatenate((centers_x, centers_y), axis=1)
        anchor_boxes = np.tile(anchor_boxes, (1, 2 * num_anchors))

        # 获得先验框的左上角和右下角
        anchor_boxes[:, ::4] -= box_widths
        anchor_boxes[:, 1::4] -= box_heights
        anchor_boxes[:, 2::4] += box_widths
        anchor_boxes[:, 3::4] += box_heights
        # 将先验框变成小数形式,同时进行归一化
        # --------------------------------------------------- #
        anchor_boxes[:, ::2] /= img_width
        anchor_boxes[:, 1::2] /= img_height
        anchor_boxes = anchor_boxes.reshape(-1, 4)

        anchor_boxes = np.minimum(np.maximum(anchor_boxes, 0.0), 1.0)
        return anchor_boxes

3. VOC格式数据集的准备

首先,VOC图片数据集的存放方式为:

|-VOCdevkit
|---VOC2007
|-----Annotations
|-----ImageSets
|-----JPEGImages

其中,Annotations存放每张图片的XML文件,XML文件中图片的object信息表示这张图片所对应的目标检测框位置及其类别名称,每个图片可能会包含多个object。difficult表示识别难度。
XML文件包含的信息为:

<annotation>
	<folder>VOC2007</folder>
	<filename>000003.jpg</filename>
	<source>
		<database>The VOC2007 Database</database>
		<annotation>PASCAL VOC2007</annotation>
		<image>flickr</image>
		<flickrid>138563409</flickrid>
	</source>
	<owner>
		<flickrid>RandomEvent101</flickrid>
		<name>?</name>
	</owner>
	<size>
		<width>500</width>
		<height>375</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>sofa</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>123</xmin>
			<ymin>155</ymin>
			<xmax>215</xmax>
			<ymax>195</ymax>
		</bndbox>
	</object>
	<object>
		<name>chair</name>
		<pose>Left</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>239</xmin>
			<ymin>156</ymin>
			<xmax>307</xmax>
			<ymax>205</ymax>
		</bndbox>
	</object>
</annotation>

ImageSets的Main文件则是存放划分的训练集、验证集、测试集的文件索引信息文件,每个索引对应着图片的文件名称。
JPEGImages则用于存放原始图片。

数据集的准备工作是生成用于训练的.txt文件,该文件每行对应一张图片,且包含了图片的图片路径及其目标框的位置、类别,如:

./data/VOCdevkit/VOC2007/JPEGImages/000005.jpg 263,324,211,339,8 165,253,264,372,8 241,295,194,299,8
./data/VOCdevkit/VOC2007/JPEGImages/000007.jpg 141,500,50,330,6

用于生成的代码为:

import os
import random
import xml.etree.ElementTree as ET
from utils.utils import get_classes


def convert_annotation(voc_devkit_path, year, image_id, list_file, classes):
    file_path = os.path.join(voc_devkit_path, 'VOC%s/Annotations/%s.xml' % (year, image_id))
    with open(file_path, 'r', encoding='utf-8') as f:
        tree = ET.parse(f)
        root = tree.getroot()

    for obj in root.iter('object'):
        difficult = 0
        if obj.find('difficult') is not None:
            difficult = int(obj.find('difficult').text)
        cls = obj.find('name').text
        if cls not in classes or difficult == 1:
            continue
        cls_id = classes.index(cls)
        xml_box = obj.find('bndbox')

        b = (float(xml_box.find('xmin').text), float(xml_box.find('xmax').text),
             float(xml_box.find('ymin').text), float(xml_box.find('ymax').text))
        list_file.write(' ' + ','.join([str(int(a)) for a in b]) + ',' + str(cls_id))


if __name__ == '__main__':
    random.seed(0)
    # -----------------------------------------------------------------------------------------------------#
    # annotation_mode用于指定该文件运行时计算的内容
    # annotation_mode为0代表整个标签处理过程,包括获得VOCdevkit/VOC2007/ImageSets里面的txt以及训练用的2007_train.txt、2007_val.txt
    # annotation_mode为1代表获得VOCdevkit/VOC2007/ImageSets里面的txt
    # annotation_mode为2代表获得训练用的2007_train.txt、2007_val.txt
    # -----------------------------------------------------------------------------------------------------#
    annotation_mode = 2
    # -------------------------------------------------------------------#
    #   必须要修改,用于生成2007_train.txt、2007_val.txt的目标信息
    #   与训练和预测所用的classes_path一致即可
    #   如果生成的2007_train.txt里面没有目标信息, 那么就是因为classes没有设定正确
    #   仅在annotation_mode为0和2的时候有效
    # -------------------------------------------------------------------#
    classes_path = "data/voc_classes.txt"
    # ----------------------------------------------------------------------------------------------------#
    #   trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1
    #   train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1
    #   仅在annotation_mode为0和1的时候有效
    # ----------------------------------------------------------------------------------------------------#
    trainval_percent = 0.9
    train_percent = 0.9
    # -------------------------------------------------------#
    #   指向VOC数据集所在的文件夹
    #   默认指向根目录下的VOC数据集
    # -------------------------------------------------------#
    voc_devkit_path = "./data/VOCdevkit"
    VOCdevkit_sets = [('2007', 'train'), ('2007', 'val')]
    classes, classes_num = get_classes(classes_path)

    if annotation_mode == 0 or annotation_mode == 1:
        print("Generate txt in ImageSets...")
        xml_file_path = os.path.join(voc_devkit_path, 'VOC2007/Annotations')
        save_base_path = os.path.join(voc_devkit_path, 'VOC2007/ImageSets/Main')
        temp_xml = os.listdir(xml_file_path)
        total_xml = []
        for xml in temp_xml:
            if xml.endswith('.xml'):
                total_xml.append(xml)

        num = len(total_xml)
        list_ = range(num)
        tv = int(num * trainval_percent)
        tr = int(tv * train_percent)
        trainval = random.sample(list_, tv)
        train = random.sample(trainval, tr)
        print("train and val size: ", tv)
        print("train size: ", tr)

        ftrainval = open(os.path.join(save_base_path, 'trainval.txt'), 'w')
        ftest = open(os.path.join(save_base_path, 'test.txt'), 'w')
        ftrain = open(os.path.join(save_base_path, 'train.txt'), 'w')
        fval = open(os.path.join(save_base_path, 'val.txt'), 'w')

        for i in list_:
            name = total_xml[i][:-4] + '\n'
            if i in trainval:
                ftrainval.write(name)
                if i in train:
                    ftrain.write(name)
                else:
                    fval.write(name)
            else:
                ftest.write(name)
        ftrainval.close()
        ftrain.close()
        fval.close()
        ftest.close()
        print("Generate txt in ImageSets done!")
    if annotation_mode == 0 or annotation_mode == 2:
        print("Generate 2007_train.txt and 2007_val.txt for model training...")
        for year, data_name in VOCdevkit_sets:
            images_id_path = os.path.join(voc_devkit_path, 'VOC' + year, 'ImageSets', 'Main', data_name + '.txt')
            with open(images_id_path, 'r', encoding='utf-8') as f:
                image_ids = f.read().strip().split()
            with open('./data/%s_%s.txt' % (year, data_name), 'w', encoding='utf-8') as f:
                for image_id in image_ids:
                    f.write('%s/VOC%s/JPEGImages/%s.jpg' % (voc_devkit_path, year, image_id))
                    convert_annotation(voc_devkit_path, year, image_id, f, classes)
                    f.write('\n')
        print("Generate 2007_train.txt and 2007_val.txt for model training done!")

4. 模型训练

4.1 模型如何从特征中获取预测结果

SSD模型采用的有效特征层共6个,首先针对每个特征图中的每个特征点预设default boxes,具体为:mbox_sizes = [4, 6, 6, 6, 4, 4],分别对应feature_map = [Conv4_3, Conv7, Conv8_2 , Conv9_2, Conv10_2 , Conv11_2],同时feature_map的尺寸分别为feature_map_shape = [38*38, 19*19, 10*10, 5*5, 3*3, 1*1],可以计算出总的default boxes数量为8732。

对于一张图片来说,其包含的目标可能有多个,因此需要判断出哪些预设的default boxes是否包含目标,以及判断出目标的类别(分类);对于真实包含目标的default boxes,需要对其进行调整来获得最终的预测框(回归预测)。因此,对这六个有效特征图的输出进行两个3*3的卷积计算,分别用于回归预测和分类预测。

  • 对于分类预测:数据集的类别数为num_classes,对于特征图K,其卷积后输出为mbox_size[k]*num_classes
  • 对于回归预测:每个框是由中心点 ( x , y ) (x, y) (x,y)和宽高 ( w , h ) (w,h) (w,h)决定的,因此,对于特征图K,其卷积后的输出为mbox[k]*4
# feature_map = [Conv4_3, Conv7, Conv8_2 , Conv9_2, Conv10_2 , Conv11_2]
for k, v in enumerate(backbone_source):
	loc_layers += [nn.Conv2d(self.vgg[v].out_channels, mbox[k] * 4, kernel_size=(3, 3), padding=1)]
	conf_layers += [nn.Conv2d(self.vgg[v].out_channels, mbox[k] * num_classes, kernel_size=(3, 3), padding=1)]

for k, v in enumerate(self.extras[1::2], 2):
	loc_layers += [nn.Conv2d(v.out_channels, mbox[k] * 4, kernel_size=(3, 3), padding=1)]
	conf_layers += [nn.Conv2d(v.out_channels, mbox[k] * num_classes, kernel_size=(3, 3), padding=1)]

在这里插入图片描述

loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
# -------------------------------------------------------------#
#   loc会reshape到batch_size, num_anchors, 4
#   conf会reshap到batch_size, num_anchors, self.num_classes
# -------------------------------------------------------------#
output = (loc.view(loc.size(0), -1, 4), conf.view(conf.size(0), -1, self.num_classes),)

4.2 ground truth box(gt box)与default boxes的匹配

SSD模型首先针对每个特征层会生成许多default boxes,但我们需要对其进行筛选,从而匹配出与gt box相对应的Prior box,以便用于训练。

简单来说:首先获得图片的回归预测结果以及分类置信度(概率);其次,针对每一张图片进行解码,获取预测框的真实框的情况;然后针对每一类别,取出大于阈值的对应框,并利用非极大抑制筛选出较好的结果;最终将label、置信度、框的位置进行堆叠并返回result。

class BBoxUtility(object):
    def __init__(self, num_classes):
        self.num_classes = num_classes

    def ssd_correct_boxes(self, box_xy, box_wh, input_shape, image_shape, letterbox_image):
        # -----------------------------------------------------------------#
        #   把y轴放前面是因为方便预测框和图像的宽高进行相乘
        # -----------------------------------------------------------------#
        box_yx = box_xy[..., ::-1]
        box_hw = box_wh[..., ::-1]
        input_shape = np.array(input_shape)
        image_shape = np.array(image_shape)

        if letterbox_image:
            # -----------------------------------------------------------------#
            #   这里求出来的offset是图像有效区域相对于图像左上角的偏移情况
            #   new_shape指的是宽高缩放情况
            # -----------------------------------------------------------------#
            new_shape = np.round(image_shape * np.min(input_shape / image_shape))
            offset = (input_shape - new_shape) / 2. / input_shape
            scale = input_shape / new_shape

            box_yx = (box_yx - offset) * scale
            box_hw *= scale

        box_mins = box_yx - (box_hw / 2.)
        box_maxes = box_yx + (box_hw / 2.)
        boxes = np.concatenate([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2]],
                               axis=-1)
        boxes *= np.concatenate([image_shape, image_shape], axis=-1)
        return boxes

    def decode_boxes(self, mbox_loc, anchors, variances):
        # 获得先验框的宽与高
        anchor_width = anchors[:, 2] - anchors[:, 0]
        anchor_height = anchors[:, 3] - anchors[:, 1]
        # 获得先验框的中心点
        anchor_center_x = 0.5 * (anchors[:, 2] + anchors[:, 0])
        anchor_center_y = 0.5 * (anchors[:, 3] + anchors[:, 1])

        # 真实框距离先验框中心的xy轴偏移情况
        decode_bbox_center_x = mbox_loc[:, 0] * anchor_width * variances[0]
        decode_bbox_center_x += anchor_center_x
        decode_bbox_center_y = mbox_loc[:, 1] * anchor_height * variances[0]
        decode_bbox_center_y += anchor_center_y

        # 真实框的宽与高的求取
        decode_bbox_width = torch.exp(mbox_loc[:, 2] * variances[1])
        decode_bbox_width *= anchor_width
        decode_bbox_height = torch.exp(mbox_loc[:, 3] * variances[1])
        decode_bbox_height *= anchor_height

        # 获取真实框的左上角与右下角
        decode_bbox_xmin = decode_bbox_center_x - 0.5 * decode_bbox_width
        decode_bbox_ymin = decode_bbox_center_y - 0.5 * decode_bbox_height
        decode_bbox_xmax = decode_bbox_center_x + 0.5 * decode_bbox_width
        decode_bbox_ymax = decode_bbox_center_y + 0.5 * decode_bbox_height

        # 真实框的左上角与右下角进行堆叠
        decode_bbox = torch.cat((decode_bbox_xmin[:, None],
                                 decode_bbox_ymin[:, None],
                                 decode_bbox_xmax[:, None],
                                 decode_bbox_ymax[:, None]), dim=-1)
        # 防止超出0与1
        decode_bbox = torch.min(torch.max(decode_bbox, torch.zeros_like(decode_bbox)), torch.ones_like(decode_bbox))
        return decode_bbox

    def decode_box(self, predictions, anchors, image_shape, input_shape, letterbox_image, variances=[0.1, 0.2],
                   nms_iou=0.3, confidence=0.5):
        # ---------------------------------------------------#
        #   :4是回归预测结果
        # ---------------------------------------------------#
        mbox_loc = predictions[0]
        # ---------------------------------------------------#
        #   获得种类的置信度
        # ---------------------------------------------------#
        mbox_conf = nn.Softmax(-1)(predictions[1])

        results = []
        # ----------------------------------------------------------------------------------------------------------------#
        #   对每一张图片进行处理,由于在predict.py的时候,我们只输入一张图片,所以for i in range(len(mbox_loc))只进行一次
        # ----------------------------------------------------------------------------------------------------------------#
        for i in range(len(mbox_loc)):
            results.append([])
            # --------------------------------#
            #   利用回归结果对先验框进行解码
            # --------------------------------#
            decode_bbox = self.decode_boxes(mbox_loc[i], anchors, variances)

            for c in range(1, self.num_classes):
                # --------------------------------#
                #   取出属于该类的所有框的置信度
                #   判断是否大于门限
                # --------------------------------#
                c_confs = mbox_conf[i, :, c]
                c_confs_m = c_confs > confidence
                if len(c_confs[c_confs_m]) > 0:
                    # -----------------------------------------#
                    #   取出得分高于confidence的框
                    # -----------------------------------------#
                    boxes_to_process = decode_bbox[c_confs_m]
                    confs_to_process = c_confs[c_confs_m]

                    keep = nms(
                        boxes_to_process,
                        confs_to_process,
                        nms_iou
                    )
                    # -----------------------------------------#
                    #   取出在非极大抑制中效果较好的内容
                    # -----------------------------------------#
                    good_boxes = boxes_to_process[keep]
                    confs = confs_to_process[keep][:, None]
                    labels = (c - 1) * torch.ones((len(keep), 1)).cuda() if confs.is_cuda else (c - 1) * torch.ones(
                        (len(keep), 1))
                    # -----------------------------------------#
                    #   将label、置信度、框的位置进行堆叠。
                    # -----------------------------------------#
                    c_pred = torch.cat((good_boxes, labels, confs), dim=1).cpu().numpy()
                    # 添加进result里
                    results[-1].extend(c_pred)

            if len(results[-1]) > 0:
                results[-1] = np.array(results[-1])
                box_xy, box_wh = (results[-1][:, 0:2] + results[-1][:, 2:4]) / 2, results[-1][:, 2:4] - results[-1][:,
                                                                                                        0:2]
                results[-1][:, :4] = self.ssd_correct_boxes(box_xy, box_wh, input_shape, image_shape, letterbox_image)

        return results

4.3 损失函数

SSD模型针对包含多个的目标的图片进行处理,其损失函数包括两部分:置信度损失和位置损失,计算方式为:
L ( x , c , l , g ) = 1 N [ L c o n f ( x , c ) + α L l o c ( x , l , g ) ] L(x, c , l, g) = \frac{1}{N} [L_{conf}(x, c) + \alpha L_{loc}(x, l, g)] L(x,c,l,g)=N1?[Lconf?(x,c)+αLloc?(x,l,g)]
其中:

  • c, l, g 分别表示为类别置信度预测值、预测框和真实框的参数(宽高和中心位置)
  • N表示正样本的数量
  • x表示一个示性函数,即 x i j p = { 1 , 0 } x^{p}_{ij} = \{1, 0\} xijp?={10},1表示第 i i i个default box和类别为 p p p的第 j j j的gt box相匹配;0表示未匹配。
  • L c o n f L_{conf} Lconf? L l o c L_{loc} Lloc?分别表示置信度损失和位置损失。

位置损失采用 s m o o t h L 1 smooth_{L1} smoothL1? Loss,该损失是计算需要回归至default bounding box 的中心及宽度、高度的偏移量,其计算方式为:
L c o n f ( x , l , g ) = ∑ i ∈ P o s i t i v e N ∑ m ∈ { c x , c y , w , h } x i j k s m o o t h L 1 ( l i m ? g ^ j m ) L_{conf} (x, l, g) = \sum^{N}_{i \in Positive} \sum_{m \in \{cx, cy, w, h\}} x^k_{ij} smooth_{L1}(l^m_{i} - \hat{g}^m_j) Lconf?(x,l,g)=iPositiveN?m{cx,cy,w,h}?xijk?smoothL1?(lim??g^?jm?)
由于 x i j p = { 1 , 0 } x^{p}_{ij} = \{1, 0\} xijp?={10}, 位置损失只针对正样本来进行计算,其中:

  • l i m l_i^m lim? g ^ i m \hat{g}^m_i g^?im?分别表示第 i i i个预测框 l l l和调整的第 j j j个gt box 的中心、宽和高。
    在这里插入图片描述
    置信度损失采用多个类别上的softmax损失:
    L c o n f = ? ∑ i ∈ P o s i t i v e N x i j p l o g ( c ^ i p ) ? ∑ i ∈ N e g a t i v e l o g ( c ^ i 0 ) , c ^ i p = e x p ( c i p ) ∑ p e x p ( c i p ) L_{conf} = - \sum^{N}_{i \in Positive} x^{p}_{ij} log(\hat{c}^{p}_{i}) - \sum_{i \in Negative} log(\hat{c}^{0}_{i}), \quad \hat{c}_{i}^{p} = \frac{exp(c^p_{i})}{\sum_p exp(c^p_i)} Lconf?=?iPositiveN?xijp?log(c^ip?)?iNegative?log(c^i0?),c^ip?=p?exp(cip?)exp(cip?)?
    其中, c ^ i p \hat{c}_{i}^{p} c^ip?表示的在 p p p类别中,第 i i i个default box 的置信度, p = 0 p = 0 p=0是背景。
class MultiboxLoss(nn.Module):
    def __init__(self, num_classes, alpha=1.0, neg_pos_ratio=3.0,
                 background_label_id=0, negatives_for_hard=100.0):
        super(MultiboxLoss, self).__init__()
        self.num_classes = num_classes
        self.alpha = alpha
        self.neg_pos_ratio = neg_pos_ratio
        if background_label_id != 0:
            raise Exception('Only 0 as background label id is supported')
        self.background_label_id = background_label_id
        self.negatives_for_hard = torch.FloatTensor([negatives_for_hard])[0]

    def _l1_smooth_loss(self, y_true, y_pred):
        abs_loss = torch.abs(y_true - y_pred)
        sq_loss = 0.5 * (y_true - y_pred) ** 2
        l1_loss = torch.where(abs_loss < 1.0, sq_loss, abs_loss - 0.5)
        return torch.sum(l1_loss, -1)

    def _softmax_loss(self, y_true, y_pred):
        y_pred = torch.clamp(y_pred, min=1e-7)
        softmax_loss = -torch.sum(y_true * torch.log(y_pred),
                                  axis=-1)
        return softmax_loss

    def forward(self, y_true, y_pred):
        # --------------------------------------------- #
        #   y_true batch_size, 8732, 4 + self.num_classes + 1
        #   y_pred batch_size, 8732, 4 + self.num_classes
        # --------------------------------------------- #
        num_boxes = y_true.size()[1]
        y_pred = torch.cat([y_pred[0], nn.Softmax(-1)(y_pred[1])], dim=-1)

        # --------------------------------------------- #
        #   分类的loss
        #   batch_size,8732,21 -> batch_size,8732
        # --------------------------------------------- #
        conf_loss = self._softmax_loss(y_true[:, :, 4:-1], y_pred[:, :, 4:])

        # --------------------------------------------- #
        #   框的位置的loss
        #   batch_size,8732,4 -> batch_size,8732
        # --------------------------------------------- #
        loc_loss = self._l1_smooth_loss(y_true[:, :, :4],
                                        y_pred[:, :, :4])

        # --------------------------------------------- #
        #   获取所有的正标签的loss
        # --------------------------------------------- #
        pos_loc_loss = torch.sum(loc_loss * y_true[:, :, -1],
                                 axis=1)
        pos_conf_loss = torch.sum(conf_loss * y_true[:, :, -1],
                                  axis=1)

        # --------------------------------------------- #
        #   每一张图的正样本的个数
        #   num_pos     [batch_size,]
        # --------------------------------------------- #
        num_pos = torch.sum(y_true[:, :, -1], axis=-1)

        # --------------------------------------------- #
        #   每一张图的负样本的个数
        #   num_neg     [batch_size,]
        # --------------------------------------------- #
        num_neg = torch.min(self.neg_pos_ratio * num_pos, num_boxes - num_pos)
        # 找到了哪些值是大于0的
        pos_num_neg_mask = num_neg > 0
        # --------------------------------------------- #
        #   如果所有的图,正样本的数量均为0
        #   那么则默认选取100个先验框作为负样本
        # --------------------------------------------- #
        has_min = torch.sum(pos_num_neg_mask)

        # --------------------------------------------- #
        #   从这里往后,与视频中看到的代码有些许不同。
        #   由于以前的负样本选取方式存在一些问题,
        #   我对该部分代码进行重构。
        #   求整个batch应该的负样本数量总和
        # --------------------------------------------- #
        num_neg_batch = torch.sum(num_neg) if has_min > 0 else self.negatives_for_hard

        # --------------------------------------------- #
        #   对预测结果进行判断,如果该先验框没有包含物体
        #   那么它的不属于背景的预测概率过大的话
        #   就是难分类样本
        # --------------------------------------------- #
        confs_start = 4 + self.background_label_id + 1
        confs_end = confs_start + self.num_classes - 1

        # --------------------------------------------- #
        #   batch_size,8732
        #   把不是背景的概率求和,求和后的概率越大
        #   代表越难分类。
        # --------------------------------------------- #
        max_confs = torch.sum(y_pred[:, :, confs_start:confs_end], dim=2)

        # --------------------------------------------------- #
        #   只有没有包含物体的先验框才得到保留
        #   我们在整个batch里面选取最难分类的num_neg_batch个
        #   先验框作为负样本。
        # --------------------------------------------------- #
        max_confs = (max_confs * (1 - y_true[:, :, -1])).view([-1])

        _, indices = torch.topk(max_confs, k=int(num_neg_batch.cpu().numpy().tolist()))

        neg_conf_loss = torch.gather(conf_loss.view([-1]), 0, indices)

        # 进行归一化
        num_pos = torch.where(num_pos != 0, num_pos, torch.ones_like(num_pos))
        total_loss = torch.sum(pos_conf_loss) + torch.sum(neg_conf_loss) + torch.sum(self.alpha * pos_loc_loss)
        total_loss = total_loss / torch.sum(num_pos)
        return total_loss

4.4 模型训练

  1. 获取数据集类别名称及数目、预设先验框、模型(使用预训练权重的情况下进行预训练权重初始化)、损失函数
class_names, num_classes = get_classes(classes_path)
num_classes += 1  # 含背景类别
anchors = get_anchors(input_shape, anchors_size, backbone)
model = SSD300(num_classes, backbone, pretrained)
# 不使用预训练权重时,随机初始化模型
if not pretrained:
	weights_init(model)
# 使用SSD模型预训练权重或只使用VGG主干网络权重
if model_path != '':
	print('Load weights {}.'.format(model_path))
	device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
	model_dict = model.state_dict()
	pretrained_dict = torch.load(model_path, map_location=device)
	pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
	model_dict.update(pretrained_dict)
	model.load_state_dict(model_dict)

criterion = MultiboxLoss(num_classes, neg_pos_ratio=3.0)
  1. 读取数据集(生成的train2007.txt和val2007.txt)
with open(train_annotation_path, encoding='utf-8') as f:
	train_lines = f.readlines()
with open(val_annotation_path, encoding='utf-8') as f:
	val_lines = f.readlines()
num_train = len(train_lines)
num_val = len(val_lines)


train_dataset = SSDDataset(train_lines, input_shape, anchors, batch_size, num_classes, train=True)
val_dataset = SSDDataset(val_lines, input_shape, anchors, batch_size, num_classes, train=False)

gen = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=num_workers, pin_memory=True,
                         drop_last=True, collate_fn=ssd_dataset_collate)
gen_val = DataLoader(val_dataset, shuffle=True, batch_size=batch_size, num_workers=num_workers, pin_memory=True,
                             drop_last=True, collate_fn=ssd_dataset_collate)
  1. 优化器设置
nbs = 64
lr_limit_max = 1e-3 if optimizer_type == 'sgd' else 5e-2
lr_limit_min = 3e-4 if optimizer_type == 'adam' else 5e-5
Init_lr_fit = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max)
Min_lr_fit = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2)
#  根据optimizer_type选择优化器
optimizer = {'adam': optim.Adam(model.parameters(), Init_lr_fit, betas=(momentum, 0.999), weight_decay=weight_decay),
'sgd': optim.SGD(model.parameters(), Init_lr_fit, momentum=momentum, nesterov=True,
weight_decay=weight_decay)}[optimizer_type]
#  获得学习率下降的公式
lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)
  1. 开始训练
for epoch in range(Init_Epoch, UnFreeze_Epoch):
 #   如果模型有冻结学习部分
 #   则解冻,并设置参数
 # ---------------------------------------#
	if epoch >= Freeze_Epoch and not UnFreeze_flag and Freeze_Train:
		batch_size = Unfreeze_batch_size
		#   判断当前batch_size,自适应调整学习率
		nbs = 64
		lr_limit_max = 1e-3 if optimizer_type == 'adam' else 5e-2
		lr_limit_min = 3e-4 if optimizer_type == 'adam' else 5e-5
		Init_lr_fit = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max)
		Min_lr_fit = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2)
		#   获得学习率下降的公式
		lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)
		if backbone == "vgg":
			for param in model.vgg[:28].parameters():
			param.requires_grad = True
		else:
			for param in model.mobilenet.parameters():
			param.requires_grad = True
		epoch_step = num_train // batch_size
		epoch_step_val = num_val // batch_size
		if epoch_step == 0 or epoch_step_val == 0:
			raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。")
		gen = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=num_workers,
						pin_memory=True,drop_last=True, collate_fn=ssd_dataset_collate)
		gen_val = DataLoader(val_dataset, shuffle=True, batch_size=batch_size, num_workers=num_workers, 
							pin_memory=True, 
							drop_last=True, collate_fn=ssd_dataset_collate)

		UnFreeze_flag = True

	set_optimizer_lr(optimizer, lr_scheduler_func, epoch)

	fit_one_epoch(model_train, model, criterion, loss_history, optimizer, epoch,
                          epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period,
                          save_dir)

5. 测试,获取mAP

针对测试集进行测试,获取mAP.

if __name__ == "__main__":
    '''
    Recall和Precision不像AP是一个面积的概念,在门限值不同时,网络的Recall和Precision值是不同的。
    map计算结果中的Recall和Precision代表的是当预测时,门限置信度为0.5时,所对应的Recall和Precision值。

    此处获得的./map_out/detection-results/里面的txt的框的数量会比直接predict多一些,这是因为这里的门限低,
    目的是为了计算不同门限条件下的Recall和Precision值,从而实现map的计算。
    '''
    # ------------------------------------------------------------------------------------------------------------------#
    #   map_mode用于指定该文件运行时计算的内容
    #   map_mode为0代表整个map计算流程,包括获得预测结果、获得真实框、计算VOC_map。
    #   map_mode为1代表仅仅获得预测结果。
    #   map_mode为2代表仅仅获得真实框。
    #   map_mode为3代表仅仅计算VOC_map。
    #   map_mode为4代表利用COCO工具箱计算当前数据集的0.50:0.95map。需要获得预测结果、获得真实框后并安装pycocotools才行
    # -------------------------------------------------------------------------------------------------------------------#
    map_mode = 0
    # -------------------------------------------------------#
    #   此处的classes_path用于指定需要测量VOC_map的类别
    #   一般情况下与训练和预测所用的classes_path一致即可
    # -------------------------------------------------------#
    classes_path = './data/voc_classes.txt'
    # -------------------------------------------------------#
    #   MINOVERLAP用于指定想要获得的mAP0.x
    #   比如计算mAP0.75,可以设定MINOVERLAP = 0.75。
    # -------------------------------------------------------#
    MINOVERLAP = 0.5
    # -------------------------------------------------------#
    #   map_vis用于指定是否开启VOC_map计算的可视化
    # -------------------------------------------------------#
    map_vis = False
    # -------------------------------------------------------#
    #   指向VOC数据集所在的文件夹
    #   默认指向根目录下的VOC数据集
    # -------------------------------------------------------#
    VOCdevkit_path = './data/VOCdevkit'
    # -------------------------------------------------------#
    #   结果输出的文件夹,默认为map_out
    # -------------------------------------------------------#
    map_out_path = 'map_out'

    image_ids = open(os.path.join(VOCdevkit_path, "VOC2007/ImageSets/Main/test.txt")).read().strip().split()

    if not os.path.exists(map_out_path):
        os.makedirs(map_out_path)
    if not os.path.exists(os.path.join(map_out_path, 'ground-truth')):
        os.makedirs(os.path.join(map_out_path, 'ground-truth'))
    if not os.path.exists(os.path.join(map_out_path, 'detection-results')):
        os.makedirs(os.path.join(map_out_path, 'detection-results'))
    if not os.path.exists(os.path.join(map_out_path, 'images-optional')):
        os.makedirs(os.path.join(map_out_path, 'images-optional'))

    class_names, _ = get_classes(classes_path)

    if map_mode == 0 or map_mode == 1:
        print("Load model.")
        ssd = SSD(confidence=0.01, nms_iou=0.5)
        print("Load model done.")

        print("Get predict result.")
        for image_id in tqdm(image_ids):
            image_path = os.path.join(VOCdevkit_path, "VOC2007/JPEGImages/" + image_id + ".jpg")
            image = Image.open(image_path)
            if map_vis:
                image.save(os.path.join(map_out_path, "images-optional/" + image_id + ".jpg"))
            ssd.get_map_txt(image_id, image, class_names, map_out_path)
        print("Get predict result done.")

    if map_mode == 0 or map_mode == 2:
        print("Get ground truth result.")
        for image_id in tqdm(image_ids):
            with open(os.path.join(map_out_path, "ground-truth/" + image_id + ".txt"), "w") as new_f:
                root = ET.parse(os.path.join(VOCdevkit_path, "VOC2007/Annotations/" + image_id + ".xml")).getroot()
                for obj in root.findall('object'):
                    difficult_flag = False
                    if obj.find('difficult') != None:
                        difficult = obj.find('difficult').text
                        if int(difficult) == 1:
                            difficult_flag = True
                    obj_name = obj.find('name').text
                    if obj_name not in class_names:
                        continue
                    bndbox = obj.find('bndbox')
                    left = bndbox.find('xmin').text
                    top = bndbox.find('ymin').text
                    right = bndbox.find('xmax').text
                    bottom = bndbox.find('ymax').text

                    if difficult_flag:
                        new_f.write("%s %s %s %s %s difficult\n" % (obj_name, left, top, right, bottom))
                    else:
                        new_f.write("%s %s %s %s %s\n" % (obj_name, left, top, right, bottom))
        print("Get ground truth result done.")

    if map_mode == 0 or map_mode == 3:
        print("Get map.")
        get_map(MINOVERLAP, True, path=map_out_path)
        print("Get map done.")

    if map_mode == 4:
        print("Get map.")
        get_coco_map(class_names=class_names, path=map_out_path)
        print("Get map done.")

6 图片预测和FPS测试

if __name__ == "__main__":
    ssd = SSD()
    # ----------------------------------------------------------------------------------------------------------#
    #   mode用于指定测试的模式:
    #   'predict'表示单张图片预测,如果想对预测过程进行修改,如保存图片,截取对象等,可以先看下方详细的注释
    #   'video'表示视频检测,可调用摄像头或者视频进行检测,详情查看下方注释。
    #   'fps'表示测试fps,使用的图片是img里面的street.jpg,详情查看下方注释。
    #   'dir_predict'表示遍历文件夹进行检测并保存。默认遍历img文件夹,保存img_out文件夹,详情查看下方注释。
    # ----------------------------------------------------------------------------------------------------------#
    mode = "predict"
    # -------------------------------------------------------------------------#
    #   crop指定了是否在单张图片预测后对目标进行截取
    #   crop仅在mode='predict'时有效
    # -------------------------------------------------------------------------#
    crop = False
    # ----------------------------------------------------------------------------------------------------------#
    #   video_path用于指定视频的路径,当video_path=0时表示检测摄像头
    #   想要检测视频,则设置如video_path = "xxx.mp4"即可,代表读取出根目录下的xxx.mp4文件。
    #   video_save_path表示视频保存的路径,当video_save_path=""时表示不保存
    #   想要保存视频,则设置如video_save_path = "yyy.mp4"即可,代表保存为根目录下的yyy.mp4文件。
    #   video_fps用于保存的视频的fps
    #   video_path、video_save_path和video_fps仅在mode='video'时有效
    #   保存视频时需要ctrl+c退出或者运行到最后一帧才会完成完整的保存步骤。
    # ----------------------------------------------------------------------------------------------------------#
    video_path = 0
    video_save_path = ""
    video_fps = 25.0
    # -------------------------------------------------------------------------#
    #   test_interval用于指定测量fps的时候,图片检测的次数
    #   理论上test_interval越大,fps越准确。
    # -------------------------------------------------------------------------#
    test_interval = 100
    # -------------------------------------------------------------------------#
    #   dir_origin_path指定了用于检测的图片的文件夹路径
    #   dir_save_path指定了检测完图片的保存路径
    #   dir_origin_path和dir_save_path仅在mode='dir_predict'时有效
    # -------------------------------------------------------------------------#
    dir_origin_path = "img/"
    dir_save_path = "img_out/"

    if mode == "predict":
        '''
        1、该代码无法直接进行批量预测,如果想要批量预测,可以利用os.listdir()遍历文件夹,利用Image.open打开图片文件进行预测。
        具体流程可以参考get_dr_txt.py,在get_dr_txt.py即实现了遍历还实现了目标信息的保存。
        2、如果想要进行检测完的图片的保存,利用r_image.save("img.jpg")即可保存,直接在predict.py里进行修改即可。 
        3、如果想要获得预测框的坐标,可以进入ssd.detect_image函数,在绘图部分读取top,left,bottom,right这四个值。
        4、如果想要利用预测框截取下目标,可以进入ssd.detect_image函数,在绘图部分利用获取到的top,left,bottom,right这四个值
        在原图上利用矩阵的方式进行截取。
        5、如果想要在预测图上写额外的字,比如检测到的特定目标的数量,可以进入ssd.detect_image函数,在绘图部分对predicted_class进行判断,
        比如判断if predicted_class == 'car': 即可判断当前目标是否为车,然后记录数量即可。利用draw.text即可写字。
        '''
        while True:
            img = input('Input image filename:')
            try:
                image = Image.open(img)
            except:
                print('Open Error! Try again!')
                continue
            else:
                r_image = ssd.detect_image(image, crop=crop)
                r_image.show()

    elif mode == "video":
        capture = cv2.VideoCapture(video_path)
        if video_save_path != "":
            fourcc = cv2.VideoWriter_fourcc(*'XVID')
            size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
            out = cv2.VideoWriter(video_save_path, fourcc, video_fps, size)

        ref, frame = capture.read()
        if not ref:
            raise ValueError("未能正确读取摄像头(视频),请注意是否正确安装摄像头(是否正确填写视频路径)。")

        fps = 0.0
        while True:
            t1 = time.time()
            # 读取某一帧
            ref, frame = capture.read()
            if not ref:
                break
            # 格式转变,BGRtoRGB
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            # 转变成Image
            frame = Image.fromarray(np.uint8(frame))
            # 进行检测
            frame = np.array(ssd.detect_image(frame))
            # RGBtoBGR满足opencv显示格式
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

            fps = (fps + (1. / (time.time() - t1))) / 2
            print("fps= %.2f" % fps)
            frame = cv2.putText(frame, "fps= %.2f" % fps, (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

            cv2.imshow("video", frame)
            c = cv2.waitKey(1) & 0xff
            if video_save_path != "":
                out.write(frame)

            if c == 27:
                capture.release()
                break

        print("Video Detection Done!")
        capture.release()
        if video_save_path != "":
            print("Save processed video to the path :" + video_save_path)
            out.release()
        cv2.destroyAllWindows()

    elif mode == "fps":
        img = Image.open('img/street.jpg')
        tact_time = ssd.get_FPS(img, test_interval)
        print(str(tact_time) + ' seconds, ' + str(1 / tact_time) + 'FPS, @batch_size 1')

    elif mode == "dir_predict":
        import os
        from tqdm import tqdm

        img_names = os.listdir(dir_origin_path)
        for img_name in tqdm(img_names):
            if img_name.lower().endswith(
                    ('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
                image_path = os.path.join(dir_origin_path, img_name)
                image = Image.open(image_path)
                r_image = ssd.detect_image(image)
                if not os.path.exists(dir_save_path):
                    os.makedirs(dir_save_path)
                r_image.save(os.path.join(dir_save_path, img_name.replace(".jpg", ".png")), quality=95, subsampling=0)

    else:
        raise AssertionError("Please specify the correct mode: 'predict', 'video', 'fps' or 'dir_predict'.")

参考连接

参考1
参考2
参考3

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-13 11:44:22  更:2022-05-13 11:47:20 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/1 21:47:49-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码