IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【神经网络避障】基于BP神经网络的小车行驶避障算法仿真 -> 正文阅读

[人工智能]【神经网络避障】基于BP神经网络的小车行驶避障算法仿真

1.软件版本

MATLAB2019a

2.本算法理论知识

BP(Back Propagation)神经网络,其本质是一种基于误差反馈传播的神经网络算法。从结构上讲,BP神经网络是由一个信息的正向传播网络和一个误差的反向传播网络两个模块构成。BP神经网络的结构如下图所示:

???? ????从图1的结构可知,BP神经网络主要由输入层,隐含层以及输出层三个部分构成。来自外界的信息通过输入层传输进入到隐含层进行处理,并由输出层输出处理结果。当BP神经网络的输出结果和其期望结果之间的误差较大的时候,则进入反向传播阶段,并进行进行审计网络权值的修正,直到输出结果和期望结果误差满足一定条件为止。

3.部分源码

clc;
clear;
close all;
warning off;
addpath 'func\'


%小车行驶步进
lambda       = 0.1; 
Ns           = 32; 
%传感器有效半径
Sense_radius = 2; 
%定义一些变量,用于循环过程中的赋值
xs           = zeros(2,Ns);   
G1(:,1)      = zeros(Ns,1);
G2(:,1)      = zeros(Ns,1);
G3(:,1)      = zeros(Ns,1);
Jd(:,1)      = zeros(Ns,1);
for m=2:Ns
	Jd(m,1)=Jd(m-1,1)+(pi/180)*(360/Ns); 
end
%障碍物个数
N         = 18;   
%场景大小
Len       = 25; 
xmin      = [0;0];
xmax      = [Len;Len];
%障碍物和场景的间隔
SIZE      = 6;  

figure(1);
%产生障碍物
[xobstacle,yobstacle,R] = func_obstacles(N,SIZE,Len);



%起点和终点
X_start = 1;
Y_start = 1;
%起点和终点
X_end   = 20;
Y_end   = 20;
hold on
%画图
plot(X_start,Y_start,'rs');%画图
hold on
plot(X_end,Y_end,'rs');
Pend    =[X_end;Y_end];
x(:,1)  =[X_start;Y_start]; 
x(:,2)  =[X_start;Y_start];
x(:,3)  =[X_start;Y_start];

axis([0,Len,0,Len]);
axis square
text(X_start+1,Y_start+1,'START');
text(X_end+1,Y_end+1,'END');
hold on;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%根据样本数据进行训练
%注意,这里缺少大量的测试样本,故暂用自己编写数据进行模拟
NN = 10;
for ii = 1:NN
    tmps1 = (randperm(3)-2);
    data1(ii) = tmps1(1);     
end
A       =[30*rand(1,10);30*rand(1,10);data1+30*rand(1,10);20*rand(1,10)]';
B       =[data1]';
pstudy  = A;
ptest   = B/100;
trnData = pstudy;
chkData = ptest;
%创建BP神经网络
net = newff(trnData',chkData',20) ; 
%设置训练参数
net.trainparam.show   = 50 ;%显示
net.trainparam.epochs = 500 ;%迭代次数
net.trainparam.goal   = 1e-20;%优化目标
net.trainParam.lr     = 0.01 ;%学习参数
%开始训练神经网络
net = train(net,trnData',chkData') ;



figure(1);
%实时计算机器人三个传感器和障碍物的距离
TIME       = 400;
Vs         = [];
Tes        = [];
Xs         = zeros(1,TIME);
Ys         = zeros(1,TIME);
x(:,4:TIME)= zeros(2,TIME-3);
%根据时间开始循环
for time = 1:TIME
    time
    %计算四个输入
    if time <= 3
       x(:,time)= min(x(:,time),xmax);
	   x(:,time)= max(x(:,time),xmin);
       Xs(time) = X_start;
       Ys(time) = Y_start;  
       Theta    = atan((Y_end-Y_start)/(X_end-X_start)); 
    else
       x(:,time)= min(x(:,time),xmax);
	   x(:,time)= max(x(:,time),xmin);
       %计算alpha,机器人运动方向与目标方向之间的夹角
       %计算alpha,机器人运动方向与目标方向之间的夹角  
       if X_end-Xs(time-1) == 0
          tmps1 = inf; 
       else
          tmps1 =(Y_end-Ys(time-1))/(X_end-Xs(time-1));
       end
       if Xs(time-1)-Xs(time-2) == 0
          tmps2 = inf; 
       else
          tmps2 =(Ys(time-1)-Ys(time-2))/(Xs(time-1)-Xs(time-2));
       end   
       %目标方向      %运动方向
       alpha = atan(tmps1) - atan(tmps2);   
  
       %先计算障碍物和机器人的距离,然后将这些距离划分为四类,dr,d,dl和反方向的,如果没有,那么认为距离为inf
       dr  = [];
       dl  = [];
       d   = [];
       vdr = [];
       vdl = [];
       vd  = [];       
       
       for kk = 1:N
           %计算距离,障碍物和小车当前位置的间距
           dist(kk) = sqrt((xobstacle(kk)-Xs(time-1))^2 + (yobstacle(kk)-Ys(time-1))^2)-R(kk);
           if xobstacle(kk)-Xs(time-1) == 0
              vdist(kk) = 1;
           else
              vdist(kk) = sign((yobstacle(kk)-Ys(time-1))/(xobstacle(kk)-Xs(time-1))); 
           end
           if dist(kk)>0
               %计算各个距离和机器人运动方向的夹角
               if xobstacle(kk)-Xs(time-1) == 0
                  tmps3 = inf; 
               else
                  tmps3 =(yobstacle(kk)-Ys(time-1))/(xobstacle(kk)-Xs(time-1));
               end  
               Beta(kk) = (atan(tmps3))*180/pi;
               %根据角度差,分析哪些是dr,d,dl和反方向
               %说明这个障碍物在运动方向的右边
               if Beta(kk) >  15 & Beta(kk) <= 75
                  dr  = [dr,dist(kk)];
                  dl  = dl;
                  d   = d;
                  vdr = [vdr,vdist(kk)];
                  vdl = vdl;
                  vd  = vd;  
               end
               %说明这个障碍物在运动方向的左边边
               if Beta(kk) < -15 & Beta(kk) >= -75
                  dr = dr;
                  dl = [dl,dist(kk)];
                  d  = d;
                  vdr = vdr;
                  vdl = [vdl,vdist(kk)];
                  vd  = vd;    
               end    
               %说明这个障碍物在运动方向的前边
               if Beta(kk) <= 15 & Beta(kk) >= -15
                  dr = dr;
                  dl = dl;
                  d  = [d,dist(kk)];
                  vdr = vdr;
                  vdl = vdl;
                  vd  = [vd,vdist(kk)];  
               end   
           end
       end
       for m=1:Ns
           xs(:,m) = [x(1,time-1) + Sense_radius*cos(Jd(m,1)); 
                      x(2,time-1) + Sense_radius*sin(Jd(m,1))];
           G1(m,1) = func_obstacle(xs(:,m),xobstacle,yobstacle);
           G2(m,1) = func_goal(xs(:,m),Pend); 
           G3(m,1) = G1(m,1) + G2(m,1);
       end
       [val,bestone]=min(G3);
       %如果某个方向有多个障碍物,那么选择最近的那个
       %如果某个方向的距离集合为空集合,那么说明这个方向的障碍物为无穷远,直接赋值一个较大值
       dr_in = min(dr);
       if isempty(dr) == 1
          dr_in = 1e20; 
       end
       d_in  = min(d);
       if isempty(d) == 1
          d_in  = 1e20; 
       end
       dl_in = min(dl);
       if isempty(dl) == 1
          dl_in = 1e20; 
       end

       %代入到BP神经网络的四个变量
       %调用BP神经网络的模型
       YOUT        = func_nn_test(dr_in,d_in,dl_in,alpha,net);
       %计算速度和方向
       DELTA_Theta = YOUT/10;
       V           = YOUT;
       %更新小车坐标
       x(:,time) =[x(1,time-1)+lambda*cos(Jd(bestone,1)); 
                   x(2,time-1)+lambda*sin(Jd(bestone,1))];
	   Deltalambda = V;
	   Deltatheta  = DELTA_Theta;
       %更新小车坐标
	   x(:,time)   =[x(1,time)+Deltalambda*cos(Jd(bestone,1)+Deltatheta); 
	                 x(2,time)+Deltalambda*sin(Jd(bestone,1)+Deltatheta)];   
 
       %更新坐标
       Xs(time)    = x(1,time);
       Ys(time)    = x(2,time);   
       Tes         = [Tes,Jd(bestone,1)+Deltatheta];
       Vs          = [Vs,Deltalambda];       
    end

    %画图
    plot(x(1,time),x(2,time),'.')
    hold on
    drawnow;   
    if sqrt((Xs(time)-X_end)^2+(Ys(time)-Y_end)^2)<0.2
       break;
    end
end

4.仿真分析

?

5.参考文献

[1]张素芹. 机器人BP神经网络避障控制模型构建及仿真[J]. 西安工业大学学报, 2015(8):678-682.A05-48

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-15 11:35:23  更:2022-05-15 11:36:30 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/17 0:11:41-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码