IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 机器学习系列(14)_PCA对图像数据集的降维_03 -> 正文阅读

[人工智能]机器学习系列(14)_PCA对图像数据集的降维_03

作者:recommend-item-box type_blog clearfix

一、噪音过滤

降维的目的之一是希望抛弃对模型带来负面影响的特征,同时,带有效信息的特征的方差应该是远大于噪音的,所以相比噪音,有效的特征所带来的信息不会在PCA当中大量抛弃。inverse_transform能够在不恢复原始数据的情况下,将降维后的数据返回到原本的高维空间。(即能够实现:“保证维度,但是去除方差很小的特征所带来的信息”)。我们可以利用·inverse_transform来实现噪音的过滤。

寻找确定关键特征是降噪的前提,只保留关键特征,其他都可以看做是噪音。

  • 重要参数:n_components,svd_solver,random_state

  • 三个重要属性:components_,explained_variance_以及explained_variance_ratio_

  • 接口:fit,transform,fit_transform以及inverse_transform

1、案例:手写图像识别加噪与降噪

# 1. 导入所需要的库和模块
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import numpy as np
# 2. 导入数据,探索数据
digits = load_digits()
digits.data.shape

在这里插入图片描述

set(digits.target.tolist())

在这里插入图片描述

# 3. 定义画图函数
def plot_digits(data):  
    fig, axes = plt.subplots(4,10,figsize=(10,4)
                            ,subplot_kw = {"xticks":[],"yticks":[]}
                            )

    for i, ax in enumerate(axes.flat):
        ax.imshow(data[i].reshape(8,8),cmap="binary")
        
plot_digits(digits.data)

在这里插入图片描述

# 4. 为数据加上噪音
np.random.RandomState(42)

noisy = np.random.normal(digits.data,2) 
plot_digits(noisy)

为手写数据加上噪音之后的图片:
在这里插入图片描述

# 5. PCA降维
pca = PCA(0.5).fit(noisy)    #改变参数
X_dr = pca.transform(noisy)
X_dr.shape

在这里插入图片描述

# 6. 逆转降维结果,实现降噪
without_noise = pca.inverse_transform(X_dr)
plot_digits(without_noise)
plt.show()

使用inverse_transform降噪后:
在这里插入图片描述
原来没有噪声的时候的维度:

without_noise.shape

2、案例:手写图像识别寻找最佳维度

# 1. 导入需要的模块和库
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# 2. 导入数据,探索数据
data = pd.read_csv(r"digit recognizor.csv")
X = data.iloc[:,1:]
y = data.iloc[:,0]
X.shape

在这里插入图片描述

# 3. 画累计方差贡献率曲线,找最佳降维后维度的范围
pca_line = PCA().fit(X)    #PCA,不填n_components,使用X.shape中的最小值
plt.figure(figsize=[20,5])
plt.plot(np.cumsum(pca_line.explained_variance_ratio_))
plt.xlabel("number of components after dimension reduction")  #降维后的特征书目
plt.ylabel("cumulative explained variance ratio")  #累计可解释性方差累计曲线
plt.show()  #0-200之间

在这里插入图片描述

# 4. 降维后维度的学习曲线,继续缩小最佳维度的范围
score = []
for i in range(1,101,10): #取得0-100,用随机森林来跑
    X_dr = PCA(i).fit_transform(X)
    once = cross_val_score(RFC(n_estimators=10,random_state=0)  #默认为10,保持稳定。
                            ,X_dr,y,cv=5).mean()  #5次交叉验证的值,取平均值
    score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(1,101,10),score)
plt.show()

在这里插入图片描述

# 5. 细化学习曲线,找出降维后的最佳维度
score = []
for i in range(10,25):  #再截取
    X_dr = PCA(i).fit_transform(X)
    once = cross_val_score(RFC(n_estimators=10,random_state=0),X_dr,y,cv=5).mean()
    score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(10,25),score)
plt.show()
# 6. 导入找出的最佳维度进行降维,查看模型效果
X_dr = PCA(21).fit_transform(X)  #取23、21

cross_val_score(RFC(n_estimators=100,random_state=0),X_dr,y,cv=5).mean()

在这里插入图片描述

# 7. 更换模型
from sklearn.neighbors import KNeighborsClassifier as KNN
cross_val_score(KNN(),X_dr,y,cv=5).mean()

在这里插入图片描述

# 8. KNN的k值学习曲线
score = []
for i in range(10):
    X_dr = PCA(23).fit_transform(X)
    once = cross_val_score(KNN(i+1),X_dr,y,cv=5).mean()
    score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(10),score)
plt.show()

在这里插入图片描述

# 9. 定下超参数后,模型效果如何,模型运行时间如何?
cross_val_score(KNN(4),X_dr,y,cv=5).mean()

在这里插入图片描述

3、模拟PCA过程

##自适应求K值
import numpy as np
import cv2 as cv


# 数据中心化
def Z_centered(dataMat):
    rows, cols = dataMat.shape
    meanVal = np.mean(dataMat, axis=0)  # 按列求均值,即求各个特征的均值
    meanVal = np.tile(meanVal, (rows, 1))
    newdata = dataMat - meanVal
    return newdata, meanVal


# 最小化降维造成的损失,确定k
def Percentage2n(eigVals, percentage):
    sortArray = np.sort(eigVals)  # 升序
    sortArray = sortArray[-1::-1]  # 逆转,即降序
    arraySum = sum(sortArray)
    tmpSum = 0
    num = 0
    for i in sortArray:
        tmpSum += i
        num += 1
        if tmpSum >= arraySum * percentage:
            return num


# 得到最大的k个特征值和特征向量
def EigDV(covMat, p):
    D, V = np.linalg.eig(covMat)  # 得到特征值和特征向量
    k = Percentage2n(D, p)  # 确定k值
    print("保留99%信息,降维后的特征个数:" + str(k) + "\n")
    eigenvalue = np.argsort(D)
    K_eigenValue = eigenvalue[-1:-(k + 1):-1]
    K_eigenVector = V[:, K_eigenValue]
    return K_eigenValue, K_eigenVector


# 得到降维后的数据
def getlowDataMat(DataMat, K_eigenVector):
    return DataMat * K_eigenVector


# 重构数据
def Reconstruction(lowDataMat, K_eigenVector, meanVal):
    reconDataMat = lowDataMat * K_eigenVector.T + meanVal
    return reconDataMat


# PCA算法
def PCA(data, p):
    dataMat = np.float32(np.mat(data))
    # 数据中心化
    dataMat, meanVal = Z_centered(dataMat)
    # 计算协方差矩阵
    # covMat = Cov(dataMat)
    covMat = np.cov(dataMat, rowvar=0)
    # 得到最大的k个特征值和特征向量
    D, V = EigDV(covMat, p)
    # 得到降维后的数据
    lowDataMat = getlowDataMat(dataMat, V)
    # 重构数据
    reconDataMat = Reconstruction(lowDataMat, V, meanVal)
    return reconDataMat


def main():
    imagePath = '96014.jpg'
    image = cv.imread(imagePath)
    image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    rows, cols = image.shape
    print("降维前的特征个数:" + str(cols) + "\n")
    print(image)
    print('----------------------------------------')
    reconImage = PCA(image, 0.6) # 通过改变保留信息的程度来看这个图片的特征值 
    reconImage = reconImage.astype(np.uint8)
    print(reconImage)
    cv.imshow('test', reconImage)
    cv.waitKey(0)
    cv.destroyAllWindows()


if __name__ == '__main__':
    main()

4、模拟SVD过程

def svd(img, topk_percent=0.1):
    """
    使用svd对图片降维,可作为一种数据增强手段
    每列作为一个向量,先构建方阵,再求特征值 特征向量,取前N个主成分,再重构图像
    :param img: 输入图像
    :param topk_percent: 图像恢复率,
    :return: img after svd
    """
    img_src = img[...]  #img要三维的?
    if len(img.shape) == 3:
        img_src = cv2.cvtColor(img_src, cv2.COLOR_BGR2GRAY)

    h, w = img_src.shape
    data = np.asarray(img_src, np.double)
    # 以下两种方式都可以
    # method 1
    U, s, V = np.linalg.svd(data)
    K = round(len(s) * topk_percent)
    S = np.diag(s)
    major_data = np.dot(U[:, :K], np.dot(S[:K, :K], V[:K, :]))
    # # method 2
    # feat_values, feat_vectors = np.linalg.eig(np.dot(data.T, data))
    # feat_index = np.argsort(np.sqrt(feat_values), axis=0)[::-1]
    # S = np.diag(feat_values)
    # V = feat_vectors[:, feat_index]
    # S_inv = np.asmatrix(S).I
    # V_inv = np.asmatrix(V).I
    # U = np.dot(np.dot(data, V), S_inv)
    # K = round(S.shape[0] * topk_percent)
    # major_data = np.dot(np.dot(U[:, :K], S[:K, :K]), V_inv[:K, :])

    rebuild_img = np.asarray(major_data, np.uint8)

    cv2.imshow('1', rebuild_img)
    cv2.waitKey(0)
    return rebuild_img


def pca(img, topk_percent=0.1):
    """
    使用pca对图片降维,可作为一种数据增强手段
    每列作为一个向量,先0均值化,再求协方差矩阵的特征值和特征向量,取前N个主成分,再重构图像
    :param img: 输入图像
    :param topk_percent: 图像恢复率,
    :return: img after pca
    """
    img_src = img[...]
    if len(img.shape) == 3:
        img_src = cv2.cvtColor(img_src, cv2.COLOR_BGR2GRAY)

    print(img_src.shape)
    h, w = img_src.shape
    data = np.asarray(img_src, np.double)
    # 计算每列的mean
    _mean = np.mean(data, axis=0)
    data -= _mean
    # 以 列为变量计算方式,计算协方差矩阵
    data_cov = np.cov(data, rowvar=False)
    feat_values, feat_vectors = np.linalg.eig(data_cov)
    feat_index = np.argsort(np.sqrt(feat_values), axis=0)[::-1]
    V = feat_vectors[:, feat_index]
    K = round(len(feat_values) * topk_percent)# 重建图像
    major_data = np.dot(np.dot(data, V[:, :K]), V[:, :K].T) + _mean
    rebuild_img = np.asarray(major_data, np.uint8)

    cv2.imshow('0', rebuild_img) #参数错误1应该为0
    cv2.waitKey(0)
    return rebuild_img
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-18 17:38:31  更:2022-05-18 17:41:27 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 4:33:02-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码