IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 五类医学图像分类 深度学习 -> 正文阅读

[人工智能]五类医学图像分类 深度学习

import matplotlib.pyplot as plt
import numpy as np
import PIL
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential

读取图片

import pathlib
data_dir = r'C:\Users\86188\TensorFlow机器学习\CNN图像分类\五类图像'
data_dir = pathlib.Path(data_dir)
print(data_dir)
image_count = len(list(data_dir.glob('*/*.jpeg')))
print(image_count)

查看图片:

腹部CT = list(data_dir.glob('腹部CT/*'))
PIL.Image.open(str(腹部CT[0]))
脑部CT = list(data_dir.glob('脑部CT/*'))
PIL.Image.open(str(脑部CT[0]))
手X光片 = list(data_dir.glob('手X光片/*'))
PIL.Image.open(str(手X光片[0]))
胸部CT = list(data_dir.glob('胸部CT/*'))
PIL.Image.open(str(胸部CT[0]))
胸部X光片 = list(data_dir.glob('胸部X光片/*'))
PIL.Image.open(str(胸部X光片[0]))

定义一些参数:

#为加载器定义一些参数
batch_size = 32
img_height = 90
img_width = 90

使用 80% 的图像进行训练,使用 20% 的图像进行验证:


train_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="training",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)
val_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="validation",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']

plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
  for i in range(9):
    ax = plt.subplot(5, 5,i+1)
    plt.imshow(images[i].numpy().astype("uint8"))
    plt.title(class_names[labels[i]])
    plt.axis("off")
for image_batch, labels_batch in train_ds:
  print(image_batch.shape)
  print(labels_batch.shape)
  break

image_batch是形状的张量(32, 90, 90, 3)。这是一批 32 张形状的图像90x90x3(最后一个维度是指颜色通道 RGB)。label_batch是 shape 的张量,(32,)这些是 32 幅图像的对应标签。

AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
normalization_layer = layers.Rescaling(1./255)
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(normalized_ds))
first_image = image_batch[0]
print(np.min(first_image), np.max(first_image)) 

划分数据集并构建模型(CNN模型搭建):

num_classes = len(class_names)

model = Sequential([
  layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),  #最大池化层
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(num_classes)
])

?调用compile()方法指定损失函数和要使用的优化器(选择 Adam):

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
model.summary()

模型训练:

epochs=10  #迭代次数
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

从训练集和验证集可以看出,该模型在验证集和测试的准确率高达100%,不存在过拟合的情况,也不需要再使用数据增强或dropout等方法了。

绘制准确率和损失值曲线:

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('训练集和验证集的准确度')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('训练集和验证集的损失值')
plt.show()

评估模型:

loss,accuracy = model.evaluate(train_ds, verbose=1)  #verbose = 1 为输出进度条记录

print('损失值:',loss)
print('准确度:', accuracy )

进行预测:

手X光片_path = r"C:/Users/86188/TensorFlow机器学习/datasets/5ClassMedicalImg/手X光片/001017.jpeg"

img = tf.keras.utils.load_img(
    手X光片_path, target_size=(img_height, img_width)
)

img_array = tf.keras.utils.img_to_array(img)
img_array = tf.expand_dims(img_array, 0) # Create a batch


predictions = model.predict(img_array)
score = tf.nn.softmax(predictions[0])

print(
    "这个图片大概属于 {} 有着 {:.2f}%准确度."
    .format(class_names[np.argmax(score)], 100 * np.max(score))
)

?

?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章           查看所有文章
加:2022-05-18 17:38:31  更:2022-05-18 17:42:04 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/1 23:19:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码