IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Python中的图像处理(第六章)Python图像量化及采样处理(2) -> 正文阅读

[人工智能]Python中的图像处理(第六章)Python图像量化及采样处理(2)

Python中的图像处理(第六章)Python图像量化及采样处理(2)

前言

随着人工智能研究的不断兴起,Python的应用也在不断上升,由于Python语言的简洁性、易读性以及可扩展性,特别是在开源工具和深度学习方向中各种神经网络的应用,使得Python已经成为最受欢迎的程序设计语言之一。由于完全开源,加上简单易学、易读、易维护、以及其可移植性、解释性、可扩展性、可扩充性、可嵌入性:丰富的库等等,自己在学习与工作中也时常接触到Python,这个系列文章的话主要就是介绍一些在Python中常用一些例程进行仿真演示!

本系列文章主要参考杨秀章老师分享的代码资源,杨老师博客主页是Eastmount,杨老师兴趣广泛,不愧是令人膜拜的大佬,他过成了我理想中的样子,希望以后有机会可以向他请教学习交流。

因为自己是做图像语音出身的,所以结合《Python中的图像处理》,学习一下Python语法相关,OpenCV已经在Python上进行了多个版本的维护,所以相比VS,Python的环境配置相对简单,缺什么库直接安装即可。本系列文章例程都是基于Python3.8的环境下进行,所以大家在进行借鉴的时候建议最好在3.8.0版本以上进行仿真。本文继续来对本书第六章的最后5个例程进行介绍。

一. Python准备

如何确定自己安装好了python

win+R输入cmd进入命令行程序
在这里插入图片描述
点击“确定”
在这里插入图片描述
输入:python,回车
在这里插入图片描述
看到Python相关的版本信息,说明Python安装成功。

二. Python仿真

(1)新建一个chapter06_06.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -- coding:utf-8 --
# BY:Eastmount CSDN 2020-11-10
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
im = cv2.imread('people.png', 1)

#设置鼠标左键开启
en = False

#鼠标事件
def draw(event, x, y, flags, param):
    global en
    #鼠标左键按下开启en值
    if event==cv2.EVENT_LBUTTONDOWN:
        en = True
    #鼠标左键按下并且移动
    elif event==cv2.EVENT_MOUSEMOVE and flags==cv2.EVENT_LBUTTONDOWN:
        #调用函数打马赛克
        if en:
            drawMask(y,x)
        #鼠标左键弹起结束操作
        elif event==cv2.EVENT_LBUTTONUP:
            en = False
          
#图像局部采样操作         
def drawMask(x, y, size=10):
    #size*size采样处理
    m = int(x / size * size)
    n = int(y / size * size)
    print(m, n)
    #10*10区域设置为同一像素值
    for i in range(size):
        for j in range(size):
            im[m+i][n+j] = im[m][n]

#打开对话框
cv2.namedWindow('image')

#调用draw函数设置鼠标操作
cv2.setMouseCallback('image', draw)

#循环处理
while(1):
    cv2.imshow('image', im)
    #按ESC键退出
    if cv2.waitKey(10)&0xFF==27:
        break
    #按s键保存图片
    elif cv2.waitKey(10)&0xFF==115:
        cv2.imwrite('sava.png', im)

#退出窗口
cv2.destroyAllWindows()


保存.py文件
输入eixt()退出python,输入命令行进入工程文件目录
在这里插入图片描述

输入以下命令,跑起工程

python chapter06_06.py

在这里插入图片描述
没有报错,直接弹出图片,运行成功!
在这里插入图片描述
在图像上按下鼠标,即可进行采样并覆盖后续鼠标移动位置,类似于常见的在美图秀秀等修图软件上的背景擦除功能
在这里插入图片描述
同时,控制台界面打印处理像素位置数据信息
在这里插入图片描述
按s键保存图片,按ESC键退出

(2)新建一个chapter06_07.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
# BY:Eastmount CSDN 2020-11-10
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('nv.png')

#图像向下取样
r = cv2.pyrDown(img)

#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrDown', r)
cv2.waitKey()
cv2.destroyAllWindows()

保存.py文件输入以下命令,跑起工程

python chapter06_07.py

在这里插入图片描述
没有报错,直接弹出图片,运行成功!
在这里插入图片描述
在这里插入图片描述
(3)新建一个chapter06_08.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('nv.png')

#图像向下取样
r1 = cv2.pyrDown(img)
r2 = cv2.pyrDown(r1)
r3 = cv2.pyrDown(r2)

#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrDown1', r1)
cv2.imshow('PyrDown2', r2)
cv2.imshow('PyrDown3', r3)
cv2.waitKey()
cv2.destroyAllWindows()

保存.py文件输入以下命令,跑起工程

python chapter06_08.py

在这里插入图片描述
没有报错,直接弹出图片,运行成功!
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(4)新建一个chapter06_09.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
# BY:Eastmount CSDN 2020-11-10
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('lena.png')

#图像向上取样
r = cv2.pyrUp(img)

#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrUp', r)
cv2.waitKey()
cv2.destroyAllWindows()

保存.py文件输入以下命令,跑起工程

python chapter06_09.py

在这里插入图片描述
没有报错,直接弹出图片,运行成功!
在这里插入图片描述
在这里插入图片描述
(5)新建一个chapter06_10.py文件,输入以下代码,图片也放在与.py文件同级文件夹下

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('lena2.png')

#图像向上取样
r1 = cv2.pyrUp(img)
r2 = cv2.pyrUp(r1)
r3 = cv2.pyrUp(r2)

#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrUp1', r1)
cv2.imshow('PyrUp2', r2)
cv2.imshow('PyrUp3', r3)
cv2.waitKey()
cv2.destroyAllWindows()

保存.py文件输入以下命令,跑起工程

python chapter06_10.py

在这里插入图片描述
没有报错,直接弹出图片,运行成功!
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三. 小结

本文主要介绍在Python中调用OpenCV库对图像进行采样覆盖,以及对图像进行简单下采样与上采样的量化的处理过程,感兴趣的还是建议去原书第六章深入学习理解。由于本书的介绍比较系统全面,所以会出一个系列文章进行全系列仿真实现,下一篇文章将继续介绍第七章节的5例仿真实例。每天学一个Python小知识,大家一起来学习进步阿!

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-26 15:18:31  更:2022-05-26 15:19:07 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/1 23:29:29-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码