IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> PyTorch——实现自注意力机制(self-attention) -> 正文阅读

[人工智能]PyTorch——实现自注意力机制(self-attention)

1 原理简述

??Self-Attention Layer 一次检查同一句子中的所有单词的注意力,这使得它成为一个简单的矩阵计算,并且能够在计算单元上并行计算。 此外,Self-Attention Layer 可以使用下面提到的 Multi-Head 架构来拓宽视野,也就是多头注意力机制。Self-Attention Layer 基本结构如下:
在这里插入图片描述
对于每个输入 x \boldsymbol{x} x,首先经过 Embedding 层对每个输入进行编码得到 a 1 , a 2 , a 3 , a 4 \boldsymbol{a_1,a_2,a_3,a_4} a1?,a2?,a3?,a4?,后将输入特征经过三个全连接层分别得到 Query,Key,Value

  • q i ( Q u e r y ) = W q a i \boldsymbol{q^i(Query) = W^q a^i} qi(Query)=Wqai
  • k i ( K e y ) = W k a i \boldsymbol{k^i(Key) = W^k a^i} ki(Key)=Wkai
  • v i ( V a l u e ) = W v a i \boldsymbol{v^i(Value) = W^v a^i} vi(Value)=Wvai

W q , W k , W v \boldsymbol{W^q, W^k,W^v} Wq,Wk,Wv 由网络训练而来。注意力矩阵是由 Query 和 Key 计算得到,方式由许多种,如点积、缩放点积等。Value 可以看作是信息提取器,将根据单词的注意力提取一个唯一的值,也即某个特征有多少成分被提取出来。下面计算一种注意力矩阵的方式:缩放点积。
在这里插入图片描述
注意力矩阵 A \boldsymbol{A} A 定义为 Query (giver) 和 Key (receiver) 的内积除以其维度的平方根。 每个单词通过提供 Query 来匹配作为注意力的目标单词的 Key,从而对所有单词产生注意力。为防止注意力分数随维度增大而增大,让注意力矩阵除以向量的维度的开方。 然后对得到的注意力矩阵 A \boldsymbol{A} A 进行 Softmax 归一化得到 A ^ \boldsymbol{\hat{A}} A^,最后将 A ^ \boldsymbol{\hat{A}} A^ 乘以 Value 矩阵并相加得到最终的特征 b \boldsymbol{b} b
在这里插入图片描述

矩阵化如下:
在这里插入图片描述

在上述的 self-attention 中,我们最终只得到一个注意力矩阵,也就是说这个注意力矩阵所关注的信息只偏句子之间的一种关系,但是在时序序列中,往往特征之间不止一种关系,所以我们要提取多个注意力矩阵,这样可以捕获更多的信息,这种注意力机制也就是 多头注意力机制(Multi-Heads)。在实现过程中,我们只需要将原始的 q i , k i , v i \boldsymbol{q^i,k^i,v^i} qi,ki,vi 分裂为 n \boldsymbol{n} n 个就得到 n \boldsymbol{n} n 头自注意力机制了。
在这里插入图片描述

2 PyTorch 实现

定义 num_attention_heads 为注意力机制的头数,input_size 为输入特征维度,hidden_size 为 q i , k i , v i \boldsymbol{q^i,k^i,v^i} qi,ki,vi 的总维度,这样每个头的维度也可以求出,定义为 attention_head_size:

self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.all_head_size = hidden_size

定义 W q , W k , W v \boldsymbol{W^q, W^k,W^v} Wq,Wk,Wv,通过全连接网络生成:

self.key_layer = nn.Linear(input_size, hidden_size)
self.query_layer = nn.Linear(input_size, hidden_size)
self.value_layer = nn.Linear(input_size, hidden_size)

使用输入特征乘 W q , W k , W v \boldsymbol{W^q, W^k,W^v} Wq,Wk,Wv 得到 Query,Key,Value 矩阵,维度为 ( b a t c h _ s i z e , s e q _ l e n , h i d d e n _ s i z e ) (batch\_size,seq\_len, hidden\_size) (batch_size,seq_len,hidden_size)

key = self.key_layer(x)
query = self.query_layer(x)
value = self.value_layer(x)

求多头注意力机制的 W q , W k , W v \boldsymbol{W^q, W^k,W^v} Wq,Wk,Wv,头数为 num_attention_heads,并要调换维度,即将 s e q _ l e n seq\_len seq_len 维度与 n u m _ a t t e n t i o n _ h e a d s num\_attention\_heads num_attention_heads 维度对换,最终 W q , W k , W v \boldsymbol{W^q, W^k,W^v} Wq,Wk,Wv 维度为 ( b a t c h _ s i z e , n u m _ a t t e n t i o n _ h e a d s , s e q _ l e n , a t t e n t i o n _ h e a d _ s i z e ) (batch\_size,num\_attention\_heads,seq\_len,attention\_head\_size) (batch_size,num_attention_heads,seq_len,attention_head_size)

def trans_to_multiple_heads(self, x):
    new_size = x.size()[ : -1] + (self.num_attention_heads, self.attention_head_size)
    x = x.view(new_size)
    return x.permute(0, 2, 1, 3)
key_heads = self.trans_to_multiple_heads(key)
query_heads = self.trans_to_multiple_heads(query)
value_heads = self.trans_to_multiple_heads(value)

Q \boldsymbol{Q} Q K \boldsymbol{K} K 矩阵做点积运算,并进行缩放,得到注意力矩阵的维度为 ( b a t c h _ s i z e , n u m _ a t t e n t i o n _ h e a d s , s e q _ l e n , s e q _ l e n ) (batch\_size,num\_attention\_heads,seq\_len,seq\_len) (batch_size,num_attention_heads,seq_len,seq_len)

attention_scores = torch.matmul(query_heads, key_heads.permute(0, 1, 3, 2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)

对注意力矩阵进行归一化,归一化的维度为 3,矩阵的维度不发生变化:

attention_probs = F.softmax(attention_scores, dim = -1)

将注意力矩阵乘以矩阵 V \boldsymbol{V} V,得到输出特征,维度为 ( b a t c h _ s i z e , n u m _ a t t e n t i o n _ h e a d s , s e q _ l e n , a t t e n t i o n _ h e a d _ s i z e ) (batch\_size,num\_attention\_heads,seq\_len,attention\_head\_size) (batch_size,num_attention_heads,seq_len,attention_head_size)

context = torch.matmul(attention_probs, value_heads)

将各头的注意力矩阵进行拼接,contiguous() 是将 tensor 的内存变成连续的,否则进行 view 操作时会报错,至于原因可参考:https://blog.csdn.net/kdongyi/article/details/108180250

context = context.permute(0, 2, 1, 3).contiguous()
new_size = context.size()[ : -2] + (self.all_head_size , )
context = context.view(*new_size)

全部代码:

import torch
import numpy as np
import torch.nn as nn
import math
import torch.nn.functional as F

class selfAttention(nn.Module) :
    def __init__(self, num_attention_heads, input_size, hidden_size):
        super(selfAttention, self).__init__()
        if hidden_size % num_attention_heads != 0 :
            raise ValueError(
                "the hidden size %d is not a multiple of the number of attention heads"
                "%d" % (hidden_size, num_attention_heads)
            )

        self.num_attention_heads = num_attention_heads
        self.attention_head_size = int(hidden_size / num_attention_heads)
        self.all_head_size = hidden_size

        self.key_layer = nn.Linear(input_size, hidden_size)
        self.query_layer = nn.Linear(input_size, hidden_size)
        self.value_layer = nn.Linear(input_size, hidden_size)

    def trans_to_multiple_heads(self, x):
        new_size = x.size()[ : -1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(new_size)
        return x.permute(0, 2, 1, 3)

    def forward(self, x):
        key = self.key_layer(x)
        query = self.query_layer(x)
        value = self.value_layer(x)

        key_heads = self.trans_to_multiple_heads(key)
        query_heads = self.trans_to_multiple_heads(query)
        value_heads = self.trans_to_multiple_heads(value)

        attention_scores = torch.matmul(query_heads, key_heads.permute(0, 1, 3, 2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        attention_probs = F.softmax(attention_scores, dim = -1)

        context = torch.matmul(attention_probs, value_heads)
        context = context.permute(0, 2, 1, 3).contiguous()
        new_size = context.size()[ : -2] + (self.all_head_size , )
        context = context.view(*new_size)
        return context

测试:

features = torch.rand((32, 20, 10))
attention = selfAttention(2, 10, 20)
result = attention.forward(features)
print(result.shape)

结果:

torch.Size([32, 20, 20])

参考:
https://blog.csdn.net/beilizhang/article/details/115282604

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-01 15:13:42  更:2022-06-01 15:14:44 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/1 23:04:42-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码