IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【Python案例】短视频转动漫效果 -> 正文阅读

[人工智能]【Python案例】短视频转动漫效果

近日,已使用多年的人教版小学数学教材中的插画引发社会各界人士争议。咱程序员也没有手绘插画能力,但咱可以借助强大的深度学习模型将视频转动漫。本文目标是让任何具有python语言基本能力的程序员,实现短视频转动漫效果。示例效果如下:

短视频转动漫效果

1 视频转动漫整体实现思路

整个实现流程如下:

  1. 读取视频帧
  2. 将每一帧图像转为动漫帧
  3. 将转换后的动漫帧转为视频

难点在于如何将图像转为动漫效果。这里我们使用基于深度学习的动漫效果转换模型,考虑到许多读者对这块不了解,因此我这边准备好了源码和模型,直接调用即可。不想看文章细节的可以直接拖到文章末尾,获取源码。

2 图像转动漫

为了让读者不关心深度学习模型,已经为读者准备好了转换后的onnx类型模型。接下来按顺序介绍运行onnx模型流程。

2.1 安装onnxruntime

pip install onnxruntime

如果想要用GPU加速,可以安装GPU版本的onnxruntime:

pip install onnxruntime-gpu

需要注意的是:

onnxruntime-gpu的版本跟CUDA有关联,具体对应关系如下:

cuda与onnxruntime-gpu对应版本

当然了,如果用CPU运行,那就不需要考虑那么多啦。考虑到通用性,本文全部以CPU版本onnxruntime

2.2 运行模型

先导入onnxruntime库,创建InferenceSession对象,调用run函数。如下所示

import onnxruntime as rt 
sess = rt.InferenceSession(MODEL_PATH)
inp_name = sess.get_inputs()[0].name
out = sess.run(None, {inp_name: inp_image})

具体到我们这里的动漫效果,实现细节如下:

import cv2
import numpy as np
import onnxruntime as rt 

# MODEL = "models/anime_1.onnx"
MODEL = "models/anime_2.onnx"

sess = rt.InferenceSession(MODEL)
inp_name = sess.get_inputs()[0].name


def infer(rgb):
    rgb = np.expand_dims(rgb, 0)
    rgb = rgb *  2.0 / 255.0 - 1 
    rgb =  rgb.astype(np.float32) 
    out = sess.run(None, {inp_name: rgb})
    out = out[0][0]
    out = (out+1)/2*255
    out = np.clip(out, 0, 255).astype(np.uint8)
    return out

def preprocess(rgb):
    pad_w = 0
    pad_h = 0
    h,w,__ = rgb.shape
    N = 2**3
    if h%N!=0:
        pad_h=(h//N+1)*N-h
    if w%2!=0:
        pad_w=(w//N+1)*N-w
    # print(pad_w, pad_h, w, h)
    rgb = np.pad(rgb, ((0,pad_h),(0, pad_w),(0,0)), "reflect")
    return rgb, pad_w, pad_h

其中, preprocess函数确保输入图像的宽高是8的整数倍。这里主要是因为考虑到深度学习模型有下采样,确保每次下采样能被2整除。

2.3 单帧效果展示

效果1

效果2

效果3

3 视频帧读取与视频帧写入

这里使用Opencv库,提取视频中每一帧并调用回调函数将视频帧回传。在将图片转视频过程中,通过定义VideoWriter类型变量WRITE确保唯一性。具体实现代码如下:

import cv2
from tqdm import tqdm

WRITER = None
def write_frame(frame, out_path, fps=30):
    global WRITER
    if WRITER is None:
        size = frame.shape[0:2][::-1]
        WRITER = cv2.VideoWriter(
            out_path,
            cv2.VideoWriter_fourcc(*'mp4v'),  # 编码器
            fps,
            size)
    WRITER.write(frame)

def extract_frames(video_path, callback):
    video = cv2.VideoCapture(video_path)
    num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    for _ in tqdm(range(num_frames)):
        _, frame = video.read()
        if frame is not None:
            callback(frame)
        else:
            break

3 获取源码

  1. 关注公众号:Python学习实战
  2. 公众号聊天界面回复:动漫,获取完整源码。

如果您觉得本文有帮助,辛苦您点个不需花钱的赞,您的举手之劳将对我提供了无限的写作动力! 也欢迎关注我的公众号:Python学习实战, 第一时间获取最新文章。
关注【Python学习实战】

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-01 15:13:42  更:2022-06-01 15:16:11 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/30 1:30:15-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码