IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 山东大学项目实训十六——可控音乐变压器Controllable Music Transformer -> 正文阅读

[人工智能]山东大学项目实训十六——可控音乐变压器Controllable Music Transformer

Android 开发者文档指南https://developer.android.google.cn/guide/topics/media-apps/media-apps-overview?hl=zh-cn

Controllable Music Transformer

Official code for our paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award)

[Paper] [Demos] [Bibtex]

Introduction

We address the unexplored task – video background music generation. We first establish three rhythmic relations between video and background music. We then propose a Controllable Music Transformer (CMT) to achieve local and global control of the music generation process. Our proposed method does not require paired video and music data for training while generates melodious and compatible music with the given video.

Directory Structure

  • src/: code of the whole pipeline

    • train.py: training script, take a npz as input music data to train the model

    • model.py: code of the model

    • gen_midi_conditional.py: inference script, take a npz (represents a video) as input to generate several songs

    • src/video2npz/: convert video into npz by extracting motion saliency and motion speed

  • dataset/: processed dataset for training, in the format of npz

  • logs/: logs that automatically generate during training, can be used to track training process

  • exp/: checkpoints, named after val loss (e.g. loss_8_params.pt)

  • inference/: processed video for inference (.npz), and generated music(.mid)

Preparation

  • clone this repo

  • download the processed data lpd_5_prcem_mix_v8_10000.npz from HERE and put it under dataset/

  • download the pretrained model loss_8_params.pt from HERE and put it under exp/

  • install ffmpeg=3.2.4

  • prepare a Python3 conda environment

    • conda create -n mm21_py3 python=3.7
      conda activate mm21_py3
      pip install -r py3_requirements.txt
      
    • choose the correct version of torch and pytorch-fast-transformers based on your CUDA version (see fast-trainsformers repo and this issue)

  • prepare a Python2 conda environment (for extracting visbeat)

    • conda create -n mm21_py2 python=2.7
      conda activate mm21_py2
      pip install -r py2_requirements.txt
      
    • open visbeat package directory (e.g. anaconda3/envs/XXXX/lib/python2.7/site-packages/visbeat), replace the original Video_CV.py with src/video2npz/Video_CV.py

Training

Note: use the mm21_py3 environment: conda activate mm21_py3

  • A quick start using the processed data lpd_5_prcem_mix_v8_10000.npz (1~2 days on 8x 1080Ti GPUs):

    python train.py --name train_default -b 8 --gpus 0 1 2 3 4 5 6 7
    
  • If you want to reproduce the whole process:

    1. download the lpd-5-cleansed dataset from HERE and put the extracted files under dataset/lpd_5_cleansed/

    2. go to src/ and convert the pianoroll files (.npz) to midi files (~3 files / sec):

      python pianoroll2midi.py --in_dir ../dataset/lpd_5_cleansed/ --out_dir ../dataset/lpd_5_cleansed_midi/
      
    3. convert midi files to .npz files with our proposed representation (~5 files / sec):

      python midi2numpy_mix.py --midi_dir ../dataset/lpd_5_cleansed_midi/ --out_name data.npz 
      
    4. train the model (1~2 days on 8x 1080Ti GPUs):

      python train.py --name train_exp --train_data ../dataset/data.npz -b 8 --gpus 0 1 2 3 4 5 6 7
      

Note: If you want to train with another MIDI dataset, please ensure that each track belongs to one of the five instruments (Drums, Piano, Guitar, Bass, or Strings) and is named exactly with its instrument. You can check this with Muspy:

import muspy

midi = muspy.read_midi('xxx.mid')
print([track.name for track in midi.tracks]) # Should be like ['Drums', 'Guitar', 'Bass', 'Strings']

Inference

  • convert input video (MP4 format) into npz (use the mm21_py2 environment):

    conda activate mm21_py2
    cd src/video2npz
    # try resizing the video if this takes a long time
    sh video2npz.sh ../../videos/xxx.mp4
    
  • run model to generate .mid (use the mm21_py3 environment) :

    conda activate mm21_py3
    python gen_midi_conditional.py -f "../inference/xxx.npz" -c "../exp/loss_8_params.pt"
    
    # if using another training set, change `decoder_n_class` and `init_n_class` in `gen_midi_conditional` to the ones in `train.py`
    
  • convert midi into audio: use GarageBand (recommended) or midi2audio

    • set tempo to the value of tempo in video2npz/metadata.json (generated when running video2npz.sh)
  • combine original video and audio into video with BGM:

    ffmpeg -i 'xxx.mp4' -i 'yyy.mp3' -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 'zzz.mp4'
    
    # xxx.mp4: input video
    # yyy.mp3: audio file generated in the previous step
    # zzz.mp4: output video
    

Matching Method

  • The matching method finds the five most matching music pieces from the music library for a given video (use the mm21_py3 environment).

    conda activate mm21_py3
    python src/match.py inference/xxx.npz dataset/lpd_5_prcem_mix_v8_10000.npz
    

Citation

@inproceedings{di2021video,
  title={Video Background Music Generation with Controllable Music Transformer},
  author={Di, Shangzhe and Jiang, Zeren and Liu, Si and Wang, Zhaokai and Zhu, Leyan and He, Zexin and Liu, Hongming and Yan, Shuicheng},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  pages={2037--2045},
  year={2021}
}

Acknowledgements

Our code is based on Compound Word Transformer.

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-01 15:13:42  更:2022-06-01 15:16:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/30 1:04:24-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码