IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> RANSAC算法与原理(一) -> 正文阅读

[人工智能]RANSAC算法与原理(一)

算法介绍

首先我们从Random sample consensus - Wikipedia上找到RANSAC原理的介绍。

RANSAC算法的中文名称是随机抽样一致算法(Random Sample Consenus),简单的说,通过RANSAC算法,我们将数据分为inliersoutliers,inliers是对于模型拟合有效的点,也称之为内点outliers是对于模型拟合无效的点,也就是错误的数据点,称之为外点。而我们在使用观测数据拟合模型的过程中,外点的存在对于使用数据拟合模型是有害的,那么我们该如何剔除这些外点呢?RANSAC算法就是能够剔除外点的一个迭代性的算法。

举例

下图所示就是RANSAC算法的作用:剔除外点,使模型估计更加准确,参考Robust line model estimation using RANSAC — skimage v0.19.2 docs (scikit-image.org)

屏幕截图 2022-05-24 092807

算法的基本思想和流程

算法的实现流程:

  1. 选择出估计模型的最小数据样本(对于二维和三维直线拟合来说,确定一条直线最少需要2个点;对于三维平面拟合来说,确定一个三维平面最少需要3个点)
  2. 使用这个最小的数据样本,算出拟合的模型。(也就是直线方程或者平面方程)
  3. 将所有的模型带入这个拟合的模型,计算出内点 的数量。(数据点和拟合的模型的误差在一定阈值范围内的数据点的数量)
  4. 比较当前模型和之前迭代的得到的最好的模型的内点数量(内点数量越多,模型越好),记录最大的内点数的模型参数和内点数量。
  5. 重复1-4步,直到达到迭代终止条件(例如达到最大迭代数、内点数量达到迭代终止条件)

迭代次数的推导

假设内点在数据中所占的比例为 t t t
t = n i n l i e r s n i n l i e r s + n o u t l i e r s t=\frac{n_{inliers}}{n_{inliers}+n_{outliers}} t=ninliers?+noutliers?ninliers??
如果我们每次迭代都需要 N N N个点,那么每次迭代至少有一个外点的概率是:
P 1 = 1 ? t N P_{1}=1-t^N P1?=1?tN
那么我们如果迭代 k k k次,所有的 k k k次迭代都至少有一个外点的概率为 P 1 k P_{1}^{k} P1k?,那么这 k k k次迭代,能够采样到正确的 N N N内点去计算模型的概率就是上述概率的补集。
P = 1 ? P 1 k = 1 ? ( 1 ? t N ) k P=1-P_{1}^{k}=1-(1-t^{N})^{k} P=1?P1k?=1?(1?tN)k
通过上式,我们可以求得
k = l o g ( 1 ? P ) l o g ( 1 ? t N ) k=\frac{log(1-P)}{log(1-t^{N})} k=log(1?tN)log(1?P)?
注意:内点的概率 t t t是一个先验值,如果我们一开始不知道这个先验值 t t t,可以采用自适应迭代的方法,用当前的内点的比值来当成 t t t来估算迭代的次数。然后通过不断迭代,内点的比值也逐渐增大,再用新的更大的内点比值去代替 t t t的值;对于 P P P来说,一般会取一个定值0.99,等式(4)可以看出,当 P P P不变时, t t t越大, k k k越小, t t t越小, k k k越大。

算法的实现

Given:
    data – A set of observations.
    model – A model to explain observed data points.
    n – Minimum number of data points required to estimate model parameters.
    k – Maximum number of iterations allowed in the algorithm.
    t – Threshold value to determine data points that are fit well by model.
    d – Number of close data points required to assert that a model fits well to data.

Return:
    bestFit – model parameters which best fit the data (or null if no good model is found)

iterations = 0
bestFit = null
bestErr = something really large

while iterations < k do
    maybeInliers := n randomly selected values from data
    maybeModel := model parameters fitted to maybeInliers
    alsoInliers := empty set
    for every point in data not in maybeInliers do
        if point fits maybeModel with an error smaller than t
             add point to alsoInliers
        end if
    end for
    if the number of elements in alsoInliers is > d then
        // This implies that we may have found a good model
        // now test how good it is.
        betterModel := model parameters fitted to all points in maybeInliers and alsoInliers
        thisErr := a measure of how well betterModel fits these points
        if thisErr < bestErr then
            bestFit := betterModel
            bestErr := thisErr
        end if
    end if
    increment iterations
end while

return bestFit

python代码实现

以下代码参考scikit-image/fit.py at v0.19.2 · scikit-image/scikit-image (github.com),也就是skimage的源码。

def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability):
    
     if n_inliers == 0:
        return np.inf

    if probability == 1:
        return np.inf

    if n_inliers == n_samples:
        return 1

    nom = math.log(1 - probability)
    denom = math.log(1 - (n_inliers / n_samples) ** min_samples)

    return int(np.ceil(nom / denom))



def ransac(data, model_class, min_samples, residual_threshold,
   			is_data_valid=None, is_model_valid=None,
           max_trials=100, stop_sample_num=np.inf, stop_residuals_sum=0,
           stop_probability=1, random_state=None, initial_inliers=None):
    
    best_inlier_num = 0
    best_inlier_residuals_sum = np.inf
    best_inliers = []
    validate_model = is_model_valid is not None
    validate_data = is_data_valid is not None

    random_state = np.random.default_rng(random_state)

    # in case data is not pair of input and output, male it like it
    if not isinstance(data, (tuple, list)):
        data = (data, )
    num_samples = len(data[0])

    if not (0 < min_samples < num_samples):
        raise ValueError(f"`min_samples` must be in range (0, {num_samples})")

    if residual_threshold < 0:
        raise ValueError("`residual_threshold` must be greater than zero")

    if max_trials < 0:
        raise ValueError("`max_trials` must be greater than zero")

    if not (0 <= stop_probability <= 1):
        raise ValueError("`stop_probability` must be in range [0, 1]")

    if initial_inliers is not None and len(initial_inliers) != num_samples:
        raise ValueError(
            f"RANSAC received a vector of initial inliers (length "
            f"{len(initial_inliers)}) that didn't match the number of "
            f"samples ({num_samples}). The vector of initial inliers should "
            f"have the same length as the number of samples and contain only "
            f"True (this sample is an initial inlier) and False (this one "
            f"isn't) values.")

    # for the first run use initial guess of inliers
    spl_idxs = (initial_inliers if initial_inliers is not None
                else random_state.choice(num_samples, min_samples,
                                         replace=False))

    # estimate model for current random sample set
    model = model_class()

    for num_trials in range(max_trials):
        # do sample selection according data pairs
        samples = [d[spl_idxs] for d in data]

        # for next iteration choose random sample set and be sure that
        # no samples repeat
        spl_idxs = random_state.choice(num_samples, min_samples, replace=False)

        # optional check if random sample set is valid
        if validate_data and not is_data_valid(*samples):
            continue

        success = model.estimate(*samples)
        # backwards compatibility
        if success is not None and not success:
            continue

        # optional check if estimated model is valid
        if validate_model and not is_model_valid(model, *samples):
            continue

        residuals = np.abs(model.residuals(*data))
        # consensus set / inliers
        inliers = residuals < residual_threshold
        residuals_sum = residuals.dot(residuals)

        # choose as new best model if number of inliers is maximal
        inliers_count = np.count_nonzero(inliers)
        if (
            # more inliers
            inliers_count > best_inlier_num
            # same number of inliers but less "error" in terms of residuals
            or (inliers_count == best_inlier_num
                and residuals_sum < best_inlier_residuals_sum)):
            best_inlier_num = inliers_count
            best_inlier_residuals_sum = residuals_sum
            best_inliers = inliers
            dynamic_max_trials = _dynamic_max_trials(best_inlier_num,
                                                     num_samples,
                                                     min_samples,
                                                     stop_probability)
            if (best_inlier_num >= stop_sample_num
                    or best_inlier_residuals_sum <= stop_residuals_sum
                    or num_trials >= dynamic_max_trials):
                break

    # estimate final model using all inliers
    if any(best_inliers):
        # select inliers for each data array
        data_inliers = [d[best_inliers] for d in data]
        model.estimate(*data_inliers)
        if validate_model and not is_model_valid(model, *data_inliers):
            warn("Estimated model is not valid. Try increasing max_trials.")
    else:
        model = None
        best_inliers = None
        warn("No inliers found. Model not fitted")

    return model, best_inliers

下一篇我们将重点讲解使用RANSAC拟合直线的例子,请移步RANSAC算法与原理(二)

References

Random sample consensus - Wikipedia

RANSAC算法详解(附Python拟合直线模型代码) - 知乎 (zhihu.com)

Robust line model estimation using RANSAC — skimage v0.19.2 docs (scikit-image.org)

scikit-image/fit.py at v0.19.2 · scikit-image/scikit-image (github.com)

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-01 15:13:42  更:2022-06-01 15:17:48 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 4:37:41-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码