IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> PyTorch----实现手写数字的识别 -> 正文阅读

[人工智能]PyTorch----实现手写数字的识别

作者:recommend-item-box type_download clearfix

加载手写数字的数据

组成训练集和测试集,这里已经下载好了,所以download为False

import torchvision

# 是否支持gpu运算
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# print(device)
# print(torch.cuda.is_available())


# 加载训练集的数据  使用torchvision自带的MNIST数据集
train_dataset = torchvision.datasets.MNIST(root='./data1',
                                           train=True,
                                           transform=torchvision.transforms.ToTensor(),
                                           download=False
                                           )

# 加载测试集的数据  创建测试集
test_dataset = torchvision.datasets.MNIST(root='./data1',
                                          train=False,
                                          transform=torchvision.transforms.ToTensor(),
                                          download=False
                                          )

数据加载器(分批加载)

# 加载数据的批次 一批有多少条数据
batch_size = 100
# 创建数据加载器shuffle为True 加载时打乱
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=batch_size,
                          shuffle=True
                          )
test_loader = DataLoader(dataset=test_dataset,
                         batch_size=batch_size,
                         shuffle=True
                         )
# 数据加载器生成的对象转为迭代器
examples = iter(test_loader)
# 使用next方法获取到一批次的数据
example_data, example_targets = examples.next()
# 遍历获取到6条数据 展示观察一下
for i in range(6):
    plt.subplot(2, 3, i + 1)
    plt.imshow(example_data[i][0], cmap='gray')
    # 查看图片的大小 方便建立模型时输入的大小
    print(example_data[i][0].shape)

plt.show()

在这里插入图片描述


建立模型

  1. 建立模型之前定义输入大小和分类类别输出大小

通过上边查看图片的大小为28*28*1,所以输入大小为784

数字识别只有0~9所以为10个类别的多分类问题

input_size = 784
num_classes = 10
  1. 创建模型类
class NeuralNet(torch.nn.Module):
    def __init__(self, n_input_size, hidden_size, n_num_classes):
        """
        神经网络类初始化
        :param n_input_size: 输入
        :param hidden_size: 隐藏层
        :param n_num_classes: 输出
        """
        # 调用父类__init__方法
        super(NeuralNet, self).__init__()
        self.input_size = input_size
        # 第一层线性模型 传入输入层和隐藏层
        self.l1 = torch.nn.Linear(n_input_size, hidden_size)
        # relu激活函数层
        self.relu = torch.nn.ReLU()
        # 第二层线性模型 传入隐藏层和输出层
        self.l2 = torch.nn.Linear(hidden_size, n_num_classes)

    def forward(self, x):
        """
        重写正向传播函数  获取到预测值
        :param x: 数据
        :return: 预测值
        """
        # 线性模型
        out = self.l1(x)
        # 激活函数
        out = self.relu(out)
        # 线性模型2
        out = self.l2(out)
        # 返回预测值
        return out


# 获取到gpu设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 创建模型并把模型放到当前支持的gpu设备中
model = NeuralNet(input_size, 500, num_classes).to(device)
print(model)

在这里插入图片描述

  • 可以看出模型一共三层
  • 输入层(节点数量和图小大小相同)
  • 隐藏层(节点数为500)
  • 输出层(输出节点数量为10 0~9

定义损失函数和优化器

  • 因为是多分类问题,所以使用交叉熵函数的多分类损失函数

  • 因为传统的梯度下降存在一定缺陷,比如学习速率一直不变,所以使用PyTorch中梯度下降的优化算法Adam算法

# 定义学习率
learning_rate = 0.01
# 损失函数
criterion = torch.nn.CrossEntropyLoss()
# 定义优化器 参数1为模型的参数 lr为学习率
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

模型训练

训练步骤:

  • 通过模型类正向传播获取到预测结果

  • 通过损失函数传入预测结果和真实值计算损失

  • 通过反向传播获取梯度

  • 通过梯度下降更新模型参数的权重

  • 梯度清空,防止下次梯度累加

  • 循环,降低损失为我们想要的结果(提高模型精度)

# 定义训练的次数
num_epochs = 10
# 训练集数据的总长度
total_steps = len(train_loader)
# 遍历训练次数
for epoch in range(num_epochs):
    # 每次从数据加载器中取出一批数据  每批次100条
    for i, (images, labels) in enumerate(train_loader):
        # 把图片降维到一维数组  加载到gpu
        images = images.reshape(-1, 28 * 28).to(device)
        # 真实值加载到gpu
        labels = labels.to(device)
        # 正向传播 获取到预测值
        outputs = model(images)
        # 通过损失函数获取到损失值
        loss_val = criterion(outputs, labels)
        # 清空梯度
        optimizer.zero_grad()
        # 进行反向传播
        loss_val.backward()
        # 梯度下降更新参数
        optimizer.step()
        # 打印每次训练的损失值
        if i % 100 == 0:
            print(f'Loss:{loss_val.item():.4f}')

print('训练完成')
# 训练完之后保存模型
torch.save(model.state_dict(), './last.pt')

在这里插入图片描述

  • 损失值很明显的在收敛
  • 生成了pt模型文件
    在这里插入图片描述

测试集抽取数据,查看预测结果

# 把测试集的数据加载器转为生成器
examples = iter(test_loader)
# next()方法获取一批数据
example_data, example_targets = examples.next()

# 拿出前三条
for i in range(3):
    # 画图展示
    plt.subplot(1, 3, i + 1)
    plt.imshow(example_data[i][0], cmap='gray')
plt.show()

images = example_data
# 图片将为加载到GPU
images = images.reshape(-1, 28 * 28).to(device)
# 正向传播获取预测结果
outputs = model(images)
# 打印结果 detach()方法结果不会计算梯度更新 转为numpy
print(f'真实结果:{example_targets[0:3].detach().numpy()}')
# 预测完的结果为10个数字的概率 使用argmax()根据行归一化并求自变量的概率最大值
print(f'预测结果:{np.argmax(outputs[0:3].cpu().detach().numpy(), axis=1)}')

在这里插入图片描述


计算模型精度

# 用测试集的数据,校验模型的准确率
with torch.no_grad():
    n_correct = 0
    n_samples = 0
    # 取出测试集数据
    for images, labels in test_loader:
        # 和训练代码一致
        images = images.reshape(-1, 28 * 28).to(device)
        labels = labels.to(device)
        outputs = model(images)

        # 返1 最大值 返2 索引                0每列最大值  1每行最大值
        _, predicted = torch.max(outputs.data, 1)
        n_samples += labels.size(0)
        n_correct += (predicted == labels).sum().item()
    # 计算模型精度
    acc = 100.0 * n_correct / n_samples
    print(f"准确率:{acc}%")

在这里插入图片描述


自己手写数字进行预测

import cv2
import numpy as np

import torch

from 手写数字神经网络结构 import NeuralNet

# 获取到gpu设备
device = torch.device('cuda')
# 加载保存好的模型
input_size = 784
num_classes = 10
model = NeuralNet(input_size, 500, num_classes)
# 因为保存模型时在GPU所以要指定map_location='cuda:0'
model.load_state_dict(torch.load('./last.pt', map_location='cuda:0'))
# 加载到gpu上
model.to(device)

# 局域内不计算梯度
with torch.no_grad():
    # cv2读取图片 灰度方式
    images = cv2.imread('./number_four.png', cv2.IMREAD_GRAYSCALE)
    # 使用大津算法进行二值化处理 并反转
    ret, thresh_img = cv2.threshold(images, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
    # 展示处理过后的图片
    cv2.imshow('png1', thresh_img)
    cv2.waitKey()
    # 图片降维 把拍的图片降维到和训练时的图片大小一样
    my_image = cv2.resize(thresh_img, (28, 28))
    # 转为numpy
    my_image = np.array(my_image, np.float32)
    # 转为torch的张量
    my_image = torch.from_numpy(my_image)
    # 降维
    my_image = my_image.reshape(-1, 28 * 28).to(device)
    # 正向传播获取预测值
    outputs = model(my_image)
    # 取出预测结果
    pred = np.argmax(outputs.cpu().detach().numpy(), axis=1)
    print(f'预测结果为:{pred[0]}')

在这里插入图片描述
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-03 23:58:52  更:2022-06-03 23:59:43 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 2:50:33-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码