| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 深度学习和图形学渲染的结合和应用 -> 正文阅读 |
|
[人工智能]深度学习和图形学渲染的结合和应用 |
🚀 优质资源分享 🚀
大家好~这一个月以来,我从0开始学习和实现“深度学习”的技术。 目录* 为什么开始学习深度学习? 为什么开始学习深度学习?其实我以前在实现与路径追踪相关的降噪算法时,就了解到可以基于深度学习来实现降噪,并且发现这方面的论文近年来越来越多。所以我初步判定深度学习是降噪领域中的发展方向。 但因为深度学习跟图形学是完全不同的学科,跨学科学习的成本太高,需要从0开始,所以我那时候没有采用深度学习的方法,而是采用更偏向于图形学的方法来实现降噪(比如SVGF/BMFR算法)。 那为什么我现在下决心从0开始学习深度学习了呢?这要感谢今年参加我开的“离线渲染(二期)”培训课的同学的反馈意见~他们表示希望多学习下实时渲染的技术,或者是能够将课程的离线渲染技术(如路径追踪)应用到实时渲染中。 第一个方案属于工业上的成熟方案,但是也有很多限制(如只支持漫反射表面),工程上也不易维护(因为是混合了光栅化和光追渲染,比较复杂); 所以我决定采用第二个方案。这个方案的技术难点就是降噪(路径追踪我已经实现了),所以我决定优先实现它。 使用深度学习来降噪的相关论文资料: 了解到“谷歌地图基于神经渲染实现了3D地图”本来我学习深度学习是一心为了用在降噪中,但是我在QQ群里与同学分享我在深度学习方面的实现进展后,有个同学提到了NeRF,说这个最近很火。 我初步研究了下,发现它使用了神经网络,用于从2D图像中重建3D渲染的。我认为我还是需要3D->2D,而不是2D->3D。也就是说,我是要渲染3D模型为2D图像的。所以我认为我目前暂时不需要用到NeRF。 但是,后来我在微信朋友圈中,看到有人分享了“谷歌地图”的发布会,它基于NeRF实现了3D地图。 相关的视频: 通过调查后,我还是很看好这个技术!NeRF属于“神经渲染”领域,有希望取代目前传统的基于几何模型的渲染!因为它只需要几张图片,就可以渲染出3D画面了,而不再需要几何模型! NeRF相关资料: NeRF的改进方向NeRF目前主要用在静态场景中,我还不清楚如何将其用在动态场景中。 提高训练速度 还有人提出了不用神经网络的方法,资料如下: 只要一张图片 将体素渲染转换为真实渲染 支持透明物体 支持超大场景 编辑场景内容 黑暗中的高光渲染 用于降噪 在Web上使用硬件来加速训练和推理?因为我是Web3D领域的开发者,我知道深度学习的Web后端可以为:CPU、WebGL、WebGPU(我不考虑WebAssembly) 我也了解到nvidia显卡有专门的神经网络硬件,但我不清楚如何使用它! 通过群里同学的提醒,我通过研究了解到现在的硬件除了CPU、GPU,还有NPU,而这个NPU是专门为深度学习设计的硬件 NPU相关介绍:NPU的发展概况 那么在Web上能使用NPU硬件吗?答案是有的!目前Web上已经制定了Web Neural Network API标准(简称WebNN),通过该API即可调用NPU硬件! 看到有人进行了测评,它的性能比WebGPU快数倍! 参考资料为: 更多的资料 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/26 2:30:36- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |