IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> NVIDIA GPU编程系列课程(CUDA编程) -> 正文阅读

[人工智能]NVIDIA GPU编程系列课程(CUDA编程)

NVIDIA网站有一部分GPU编程系列的课程,具体的课程地址为:
https://www.nvidia.cn/developer/online-training/community-training/
以下为课程的部分记录笔记,仅供学习参考:
https://gg2ksnq1wg.feishu.cn/docs/doccnh2QtoPeGfUHR4eJIAvcGzd?from=from_copylink
课程中所涉及的代码:
https://github.com/jhzhang19/NVIDIA_CUDA_program.git

1、 利用CUDA实现卷积

这一部分cuda和OpenCV联合编译一直没有成功,可能是OpenCV需要安装cuda版本的,有测试成功的朋友欢迎交流。

#include"cuda_runtime.h"
#include<cudnn.h>
#include<cuda.h>
#include<device_functions.h>
#include<opencv4/opencv2/opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;

//定义卷积核(3x3 x input_channel x output_channel)
float3 data_kernel[] = {
    make_float3(-1.0f, -1.0f, -1.0f), make_float3(0.0f, 0.0f, 0.0f), make_float3(1.0f, 1.0f, 1.0f),
    make_float3(-2.0f, -2.0f, -2.0f), make_float3(0.0f, 0.0f, 0.0f), make_float3(2.0f, 2.0f, 2.0f),
    make_float3(-1.0f, -1.0f, -1.0f), make_float3(0.0f, 0.0f, 0.0f), make_float3(1.0f, 1.0f, 1.0f),
    make_float3(-1.0f, -1.0f, -1.0f), make_float3(0.0f, 0.0f, 0.0f), make_float3(1.0f, 1.0f, 1.0f),
    make_float3(-2.0f, -2.0f, -2.0f), make_float3(0.0f, 0.0f, 0.0f), make_float3(2.0f, 2.0f, 2.0f),
    make_float3(-1.0f, -1.0f, -1.0f), make_float3(0.0f, 0.0f, 0.0f), make_float3(1.0f, 1.0f, 1.0f),
    make_float3(-1.0f, -1.0f, -1.0f), make_float3(0.0f, 0.0f, 0.0f), make_float3(1.0f, 1.0f, 1.0f),
    make_float3(-2.0f, -2.0f, -2.0f), make_float3(0.0f, 0.0f, 0.0f), make_float3(2.0f, 2.0f, 2.0f),
    make_float3(-1.0f, -1.0f, -1.0f), make_float3(0.0f, 0.0f, 0.0f), make_float3(1.0f, 1.0f, 1.0f),

};

int main(){
    //利用opencv的接口读取图片相关信息
    cv::Mat img = cv::imread("/home/zjh19/图片/00000.png");
    int imgWidth = img.cols;
    int imgHeight = img.rows;
    int imgChannel = img.channels();

    cv::Mat dst_gpu(imgHeight, imgWidth, CV_8UC3, cv::Scalar(0, 0, 0));
    size_t num = imgChannel * imgHeight * imgWidth * sizeof(unsigned char);

    // 1.在gpu上分配空间
    unsigned char *in_gpu; //输入gpu的图像数据
    unsigned char *out_gpu; //输出gpu的图像数据
    float *filt_data;
    cudaMalloc((void **)&filt_data, 3 * 3 * 3 * sizeof(float3));
    cudaMalloc((void **)&in_gpu, num);
    cudaMalloc((void **)*out_gpu, num);

    // 2.初始化句柄   
    cudnnHandle_t handle;
    cudnnCreate(&handle);
    
    // 3.描述tensor
    //input descriptor
    cudnnTensorDescriptor_t input_descriptor;
    cudnnCreateTensorDescriptor(&input_descriptor);
    cudnnSetTensor4dDescriptor(input_descriptor, CUDNN_TENSOR_NHWC, 
    CUDNN_DATA_FLOAT, 1, 3, imgHeight, imgWidth);
    //output descriptor
    cudnnTensorDescriptor_t output_descriptor;
    cudnnCreateTensorDescriptor(&output_descriptor);
    cudnnSetTensor4dDescriptor(output_descriptor, CUDNN_TENSOR_NHWC, 
    CUDNN_DATA_FLOAT, 1, 3, imgHeight, imgWidth);
    //kernel descriptor
    cudnnFilterDescriptor_t kernel_descriptor;
    cudnnCreateFilterDescriptor(&kernel_descriptor);
    cudnnSetFilter4dDescriptor(kernel_descriptor, CUDNN_DATA_FLOAT, 
    CUDNN_TENSOR_NCHW, 3, 3, 3, 3);
    
    // 4.描述操作并设置相关参数
    cudnnConvolutionDescriptor_t conv_descriptor;
    cudnnCreateConvolutionDescriptor(&conv_descriptor);
    cudnnSetConvolution2dDescriptor(conv_descriptor, 1, 1, 1, 1, 1, 1, 
    CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);

    // 5.描述算法,让计算机自动选择最佳算法
    cudnnConvolutionFwdAlgoPerf_t algo;
    cudnnGetConvolutionForwardAlgorithm_v7(handle, input_descriptor, kernel_descriptor, 
    conv_descriptor, output_descriptor, 1, 0, &algo);


    // 6.申请工作空间
    size_t workspace_size = 0;
    //计算工作空间大小
    cudnnGetConvolutionForwardWorkspaceSize(handle, input_descriptor, kernel_descriptor, conv_descriptor, output_descriptor, algo.algo, &workspace_size);
    //分配工作空间
    void *workspace = nullptr;
    cudaMalloc(&workspace, workspace_size);

    // 7.将计算需要的数据传输到GPU
    cudaMemcpy((void *)filt_data, (void *)data_kernel, 3 * 3 * 3 * sizeof(float3), cudaMemcpyHostToDevice);
    cudaMemcpy(in_gpu, img.data, num, cudaMemcpyHostToDevice);

    // 8.开始计算
    auto alpha = 1.0f, beta = 0.0f;
    cudnnConvolutionForward(handle, &alpha, input_descriptor, in_gpu, 
    kernel_descriptor, filt_data, conv_descriptor, algo.algo, &workspace, workspace_size, &beta, output_descriptor, out_gpu);

    // 9.将计算结果回传到CPU
    cudaMemcpy(dst_gpu.data, out_gpu, num, cudaMemcpyDeviceToHost);

    // 10.释放资源
    cudaFree(in_gpu);
    cudaFree(out_gpu);
    cudaFree(workspace);

    cudnnDestroyTensorDescriptor(input_descriptor);
    cudnnDestroyTensorDescriptor(output_descriptor);
    cudnnDestroyFilterDescriptor(kernel_descriptor);
    cudnnDestroyConvolutionDescriptor(conv_descriptor);

    cudnnDestroy(handle);

    return 0;
}

2、CUDA实现sobel边缘检测算子

在这里插入图片描述

#include<cuda.h>
#include<cudnn.h>
#include<cuda_runtime.h>
#include<opencv2/opencv.hpp>
#include<device_functions.h>
#include<iostream>

using namespace std;
using namespace cv;

//cpu实现边沿检测
void sobel_cpu(Mat srcImg, Mat dstImg, int imgHeight, int imgWidth){
    
}

//gpu实现sobel边沿检测
    //3x3卷积核元素定义
        // x0  x1  x2  
        // x3  x4  x5
        // x6  x7  x8
__global__ void sobel_gpu(unsigned char* in, unsigned char* out, int imgHeight, int imgWidth){
    int x = threadIdx.x + blockDim.x * blockIdx.x;
    int y = threadIdx.y + blockDim.y * blockIdx.y;

    int index = y * imgWidth + x;

    int Gx = 0;
    int Gy = 0;

    unsigned char x0, x1, x2, x3, x4, x5, x6, x7, x8;
    //没有在边缘进行padding,所以没有考虑图像边界处的像素,而且对于边界检测图像边缘一圈的像素
    // 对其影响不大
    if(x>0 && x<imgWidth && y>0 && y<imgHeight){
        x0 = in[(y - 1) * imgWidth + x - 1];//以x4为中心的左上角元素
        x1= in[(y - 1) * imgWidth + x ]; //上方元素
        x2= in[(y - 1) * imgWidth + x + 1 ]; //右上
        x3= in[y * imgWidth + x - 1 ]; //左
        x4= in[y * imgWidth + x ]; //x4
        x5= in[y * imgWidth + x + 1]; //右
        x6= in[(y + 1) * imgWidth + x - 1 ]; //左下
        x7= in[(y + 1) * imgWidth + x ]; //下
        x8= in[(y + 1) * imgWidth + x + 1 ]; //右下

        Gx = x0 + 2 * x3 + x6 - (x2 + 2 * x5 + x8); //x轴边界卷积核卷积操作
        Gy = x6 + 2 * x7 + x8 - (x0 + 2 * x1 + x2); //y轴边界卷积核卷积操作

        out[index] = (abs(Gx) + abs(Gy)) / 2; //输出结果,采用简化算法(|gx|+|gy|)/2
    }
}

int main(){
    //利用opencv接口读取图片
    Mat grayImg = imread("1.jpg", 0);
    int imgWidth = grayImg.cols;
    int imgHeight = grayImg.rows;

    //利用opencv对读取的图片进行去噪处理
    Mat gaussImg;
    GaussianBlur(grayImg, gaussImg, Size(3, 3), 0, 0, BORDER_DEFAULT);

    //cpu结果为dst_cpu,gpu结果为dst_gpu
    Mat dst_cpu(imgHeight, imgWidth, CV_8UC1, Scalar(0));
    Mat dst_gpu(imgHeight, imgWidth, CV_8UC1, Scalar(0));

    //调用sobel_cpu处理图像
    sobel_cpu(gaussImg, dst_cpu, imgHeight, imgWidth);

    //申请指针将它指向gpu空间
    size_t num = imgHeight * imgWidth * sizeof(unsigned char);
    unsigned char *in_gpu;
    unsigned char *out_gpu;
    cudaMalloc((void **)&in_gpu, num);
    cudaMalloc((void **)&out_gpu, num);

    //定义grid和block的维度
    dim3 threadsPerBlock(32, 32);
    dim3 blocksPerGrid((imgWidth + threadsPerBlock.x - 1) / threadsPerBlock.x, 
    (imgHeight + threadsPerBlock.y - 1) / threadsPerBlock.y);

    //将数据从CPU传输到gpu
    cudaMemcpy(in_gpu, gaussImg.data, num, cudaMemcpyHostToDevice);

    //调用在gpu上运行的核函数
    sobel_gpu<<<blocksPerGrid, threadsPerBlock>>>(in_gpu, out_gpu, imgHeight, imgWidth);

    //将计算结果回传到CPU内存
    cudaMemcpy(dst_gpu.data, out_gpu, num, cudaMemcpyDeviceToHost);

    //显示处理结果
    imshow("gpu", dst_gpu);
    imshow("cpu", dst_cpu);
    waitKey(0);

    //释放gpu内存空间
    cudaFree(in_gpu);
    cudaFree(out_gpu);

    return 0;
}

3、CUDA多流操作(锁页内存)

single stream

#include<stdio.h>
#include<iostream>
#include<cuda.h>
#include<cudnn.h>
#include<cuda_runtime.h>
#include<device_functions.h>

using namespace std;

//(A+B)/2=C
#define N (1024*1024)   //向量长度,每个流执行数据大小
#define FULL (N*20) //全部数据的大小

__global__ void kernel(int *a, int *b, int *c){
    int idx = threadIdx.x + blockDim.x * blockIdx.x;
    if(idx < N){
        c[idx] = (a[idx] + b[idx]) / 2;
    }
}

int main(){
    //查询设备属性
    cudaDeviceProp prop;
    int whichDevice;
    cudaGetDevice(&whichDevice);
    cudaGetDeviceProperties(&prop, whichDevice);
    if(!prop.deviceOverlap){
        cout << "Device will not support overlap!" << endl;
        return 0;
    }
    else{
        cout<<prop.deviceOverlap<<" yes"<<endl;
    }

    //初始化计时器时间
    cudaEvent_t start, stop;
    float elapsedTime;
    //声明流和Buffer指针
    cudaStream_t stream;
    int *host_a, *host_b, *host_c;
    int *dev_a, *dev_b, *dev_c;
    //创建计时器
    cudaEventCreate(&start);
    cudaEventCreate(&stop);
    //初始化流
    cudaStreamCreate(&stream);
    //在GPU端申请内存空间
    cudaMalloc((void **)&dev_a, N * sizeof(int));
    cudaMalloc((void **)&dev_b, N * sizeof(int));
    cudaMalloc((void **)&dev_c, N * sizeof(int));
    //在CPU端申请内存空间,要使用锁页内存
    cudaHostAlloc((void **)&host_a, FULL * sizeof(int), cudaHostAllocDefault);
    cudaHostAlloc((void **)&host_b, FULL * sizeof(int), cudaHostAllocDefault);
    cudaHostAlloc((void **)&host_c, FULL * sizeof(int), cudaHostAllocDefault);
    //初始化A,B向量
    for (int i = 0; i < FULL;i++){
        host_a[i] = rand();
        host_b[i] = rand();
    }
    //single stream开始计算
    cudaEventRecord(start, 0);
    //每次传输计算长度为N的数据
    for (int i = 0; i < FULL;i+=N){
        //传输数据到device,并进行计算
        cudaMemcpyAsync(dev_a, host_a + i, N * sizeof(int), cudaMemcpyHostToDevice, stream);
        cudaMemcpyAsync(dev_b, host_b + i, N * sizeof(int), cudaMemcpyHostToDevice, stream);
        kernel<<<N / 256, 256, 0, stream>>>(dev_a, dev_b, dev_c);
        //将计算结果从GPU传输到CPU
        cudaMemcpyAsync(host_c + i, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost, stream);
    }
    //最后需要同步流
    cudaStreamSynchronize(stream);
    cudaEventRecord(stop, 0);
    cudaEventSynchronize(stop);
    cudaEventElapsedTime(&elapsedTime, start, stop);
    cout << "Single Time is:" << float(elapsedTime) << " s" << endl;
    //释放内存
    cudaFree(dev_a);
    cudaFree(dev_b);
    cudaFree(dev_c);
    cudaFreeHost(host_a);
    cudaFreeHost(host_b);
    cudaFreeHost(host_c);
    cudaStreamDestroy(stream);

    return 0;
}

multi stream

#include<stdio.h>
#include<iostream>
#include<cuda.h>
#include<cudnn.h>
#include<cuda_runtime.h>
#include<device_functions.h>

using namespace std;

//(A+B)/2=C
#define N (1024*1024)   //向量长度,每个流执行数据大小
#define FULL (N*20) //全部数据的大小

__global__ void kernel(int *a, int *b, int *c){
    int idx = threadIdx.x + blockDim.x * blockIdx.x;
    if(idx < N){
        c[idx] = (a[idx] + b[idx]) / 2;
    }
}

int main(){
    //查询设备属性
    cudaDeviceProp prop;
    int whichDevice;
    cudaGetDevice(&whichDevice);
    cudaGetDeviceProperties(&prop, whichDevice);
    if(!prop.deviceOverlap){
        cout << "Device will not support overlap!" << endl;
        return 0;
    }
    else{
        cout<<prop.deviceOverlap<<" yes"<<endl;
    }

    //初始化计时器时间
    cudaEvent_t start, stop;
    float elapsedTime;
    //声明流和Buffer指针
    cudaStream_t stream0;
    cudaStream_t stream1;
    int *host_a, *host_b, *host_c;
    int *dev_a0, *dev_b0, *dev_c0;
    int *dev_a1, *dev_b1, *dev_c1;
    //创建计时器
    cudaEventCreate(&start);
    cudaEventCreate(&stop);
    //初始化流
    cudaStreamCreate(&stream0);
    cudaStreamCreate(&stream1);
    //在GPU端申请内存空间
    cudaMalloc((void **)&dev_a0, N * sizeof(int));
    cudaMalloc((void **)&dev_b0, N * sizeof(int));
    cudaMalloc((void **)&dev_c0, N * sizeof(int));
    cudaMalloc((void **)&dev_a1, N * sizeof(int));
    cudaMalloc((void **)&dev_b1, N * sizeof(int));
    cudaMalloc((void **)&dev_c1, N * sizeof(int));
    //在CPU端申请内存空间,要使用锁页内存
    cudaHostAlloc((void **)&host_a, FULL * sizeof(int), cudaHostAllocDefault);
    cudaHostAlloc((void **)&host_b, FULL * sizeof(int), cudaHostAllocDefault);
    cudaHostAlloc((void **)&host_c, FULL * sizeof(int), cudaHostAllocDefault);
    //初始化A,B向量
    for (int i = 0; i < FULL;i++){
        host_a[i] = rand();
        host_b[i] = rand();
    }
    //single stream开始计算
    cudaEventRecord(start, 0);
    //每次传输计算长度为2*N的数据(两个流,所以是2N)
    for (int i = 0; i < FULL;i+=2*N){
        //传输数据到device,并进行计算
        cudaMemcpyAsync(dev_a0, host_a + i, N * sizeof(int), cudaMemcpyHostToDevice, stream0);
        cudaMemcpyAsync(dev_a1, host_a + i+N, N * sizeof(int), cudaMemcpyHostToDevice, stream1);
        cudaMemcpyAsync(dev_b0, host_b + i, N * sizeof(int), cudaMemcpyHostToDevice, stream0);
        cudaMemcpyAsync(dev_b1, host_b + i+N, N * sizeof(int), cudaMemcpyHostToDevice, stream1);
        kernel<<<N / 256, 256, 0, stream0>>>(dev_a0, dev_b0, dev_c0);
        kernel<<<N / 256, 256, 0, stream1>>>(dev_a1, dev_b1, dev_c1);
        //将计算结果从GPU传输到CPU
        cudaMemcpyAsync(host_c + i, dev_c0, N * sizeof(int), cudaMemcpyDeviceToHost, stream0);
        cudaMemcpyAsync(host_c + i+N, dev_c1, N * sizeof(int), cudaMemcpyDeviceToHost, stream1);
    }
    //最后需要同步流
    cudaStreamSynchronize(stream0);
    cudaStreamSynchronize(stream1);
    cudaEventRecord(stop, 0);
    cudaEventSynchronize(stop);
    cudaEventElapsedTime(&elapsedTime, start, stop);
    cout << "Multi Time is:" << float(elapsedTime) << " s" << endl;
    //释放内存
    cudaFree(dev_a0);
    cudaFree(dev_b0);
    cudaFree(dev_c0);
    cudaFree(dev_a1);
    cudaFree(dev_b1);
    cudaFree(dev_c1);
    cudaFreeHost(host_a);
    cudaFreeHost(host_b);
    cudaFreeHost(host_c);
    cudaStreamDestroy(stream0);
    cudaStreamDestroy(stream1);

    return 0;
}

4、CUDA-python 图片处理

对图片像素值进行操作

import imp
import cv2 as cv
# print(cv.__version__)
import numpy as np
import numba
from numba import cuda
import time
import math

@cuda.jit  #标注为gpu执行
def process_gpu(img, channels):
    #计算线程在全局数据下的索引
    tx = cuda.blockIdx.x * cuda.blockDim.x + cuda.threadIdx.x
    ty = cuda.blockIdx.y * cuda.blockDim.y + cuda.threadIdx.y
    for c in range (channels):
        color = img[tx, ty][c] * 2.0 + 30.0 #每个通道的像素值都增大
        #对像素范围进行限定
        if color > 255:
            img[tx, ty][c] = 255
        elif color < 0:
            img[tx, ty][c] = 0
        else:
            img[tx, ty][c] = color


def process_cpu(img, dst):
    rows, cols, channels = img.shape
    for i in range(rows):
        for j in range(cols):
            for c in range(channels):
                color = img[i, j][c] * 2.0 + 30.0
                if color > 255:
                    dst[i, j][c] = 255
                elif color < 0:
                    dst[i, j][c] = 0
                else:
                    dst[i, j][c] = color



if __name__ == "__main__":
    #载入图片
    img = cv.imread("test.png")
    #读取图片像素行列信息
    rows, clos, channels = img.shape
    #cpu,gpu处理的数据
    dst_cpu = img.copy()
    dst_gpu = img.copy()

    #调用函数进行处理
    #gpu处理
    dImg = cuda.to_device(img)  #将图片数据拷贝到device上
    #设置线程/block数量
    threadsperblock = (16, 16)  #数量为16倍数,最大不超过显卡限制
    blockspergrid_x = int(math.ceil(rows/threadsperblock[0]))   #往上取整是为了让线程覆盖所有图像像素,防止遗漏像素,block个数是32的倍数
    blockspergrid_y = int(math.ceil(clos/threadsperblock[1]))
    blockspergrid = (blockspergrid_x, blockspergrid_y)
    #同步一下cpu和device的计算进度
    cuda.synchronize()
    #gpu处理时间
    print("GPU processing:")
    start_gpu = time.time()
    process_gpu[blockspergrid, threadsperblock](dImg, channels)
    cuda.synchronize()
    end_gpu = time.time()
    time_gpu = end_gpu - start_gpu
    dst_gpu = dImg.copy_to_host()
    print("GPU process time is: " + str(time_gpu) + "s")
    
    #cpu处理
    print("CPU processing:")
    start_cpu = time.time()
    process_cpu(img, dst_cpu)
    end_cpu = time.time()
    time_cpu = end_cpu - start_cpu
    print("CPU process time is: "+ str(time_cpu) + "s")

    #保存处理结果
    cv.imwrite("result_cpu.png", dst_cpu)
    cv.imwrite("result_gpu.png", dst_gpu)
    print("Process Done!")

5.CUDA python 内存操作

矩阵相乘计算A*B=C,分别使用CPU、GPU共享内存、GPU全局内存进行计算存储,比较时间快慢。
在这里插入图片描述

import numba
from numba import cuda
import math
import numpy as np
import time

#每个block里的thread数量
TPB = 16


@numba.jit(nopython=True)  #使用numba加速cpu处理
def matmul_cpu(A, B, C):
    for y in range(B.shape[1]):
        for x in range(A.shape[0]):
            tmp = 0.
            for k in range(A.shape[1]):
                tmp = A[x,k] * B[k, y]  #矩阵A的第x行与矩阵B的第y列逐元素相乘累加
            C[x, y] = tmp


@cuda.jit
def matmul_gpu(A, B, C):
    row, col = cuda.grid(2) #当前线程在grid中的索引
    if row<C.shape[0] and col < C.shape[1]:
        tmp = 0.
        for k in range(A.shape[1]):
            tmp += A[row, k] * B[k, col]
        C[row, col] = tmp
    

@cuda.jit
def matmul_shared_mem(A, B, C):
    #每次利用shared memory 读取一部分数据
    sA = cuda.shared.array(shape=(TPB, TPB), dtype=numba.float32)
    sB = cuda.shared.array(shape=(TPB, TPB), dtype=numba.float32)
    x, y = cuda.grid(2) #当前线程在grid中的block索引

    tx = cuda.threadIdx.x
    ty = cuda.threadIdx.y
    if x >=C.shape[0] and y <= C.shape[1]:
        return
    tmp = 0.
    for i in range(int(A.shape[1]/TPB)):
        sA[tx, ty] = A[x, ty+i*TPB] #每次读取矩阵A中TPB长度的一行
        sB[tx, ty] = B[tx+i*TPB, y] #每次读取矩阵B中TPB长度的一列
        cuda.syncthreads()  #此处是同步线程
        for j in range(TPB):
            #计算两个子矩阵相乘
            tmp += sA[tx, j] * sB[j, ty]
            cuda.syncthreads()
        C[x, y] = tmp



#输入数据
A = np.full((TPB*500, TPB*500), 3, np.float)
B = np.full((TPB*500, TPB*500), 4, np.float)
#输出结果 A*B=C
C_cpu = np.full((A.shape[0], B.shape[1]), 0, np.float)

#CPU 处理计时
print("Start processing in CPU")
start_cpu = time.time()
matmul_cpu(A, B, C_cpu)
end_cpu = time.time()
time_cpu = end_cpu - start_cpu
print("CPU process time is: "+ str(time_cpu)+" s")

#GPU处理
#数据传输到gpu上
A_global_mem = cuda.to_device(A)
B_global_mem = cuda.to_device(B)
C_global_mem = cuda.device_array((A.shape[0], B.shape[1]))
C_shared_mem = cuda.device_array((A.shape[0], B.shape[1])) 

threadsperblock = (TPB, TPB)
blockspergrid_x = int(math.ceil(A.shape[0]/threadsperblock[0]))
blockspergrid_y = int(math.ceil(B.shape[1]/threadsperblock[1]))
blockspergrid = (blockspergrid_x, blockspergrid_y)

# gpu_global_memory处理计时
print("GPU processing")
start_gpu = time.time()
matmul_gpu[blockspergrid, threadsperblock](A_global_mem, B_global_mem, C_global_mem)
cuda.synchronize()
end_gpu = time.time()
time_gpu = end_gpu - start_gpu
C_global_gpu = C_global_mem.copy_to_host()  #传回host
print("GPU time is: "+str(time_gpu)+" s")


#gpu_shared_memory处理计时
start_gpu_shared = time.time()
matmul_shared_mem[blockspergrid, threadsperblock](A_global_mem, B_global_mem, C_shared_mem)
cuda.synchronize()
end_gpu_shared = time.time()
time_gpu_shared = end_gpu_shared - start_gpu_shared
print("GPU time(shared memory) is: " + str(time_gpu_shared) + " s")
C_shared_gpu = C_shared_mem.copy_to_host()
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-16 21:42:28  更:2022-06-16 21:43:31 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 2:38:54-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码