前言
本文的主要内容是基于 PyTorch 的 cifar-10 图像分类,文中包括 cifar-10 数据集介绍、环境配置、实验代码、运行结果以及遇到的问题这几个部分,本实验采用了基本网络和VGG加深网络模型,其中VGG加深网络模型的识别准确率是要优于基本网络模型的。
一、cifar-10 数据集介绍
cifar-10 数据集由 60000 张分辨率为 32x32 彩色图像组成,共分为 10 类,每类包含 6000 张图像,cifar-10 数据集有 50000 个训练图像和 10000 个测试图像。 数据集分为五个训练批次和一个测试批次,每个批次包含 10000 张图像,测试批次恰好包含从每个类中随机选择的 1000 张图像,训练批次以随机顺序包含其余图像,但某些训练批处理可能包含来自一个类的图像多于另一个类的图像,在它们之间,训练批次正好包含来自每个类的 5000 张图像。 下面是数据集中所包含的类以及每个类中的 10 个随机图像。 由上图可以看到,cifar-10 数据集包含飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船以及卡车这十类,这些类是完全相互排斥的,汽车和卡车之间也没有重叠,汽车包括轿车、SUV等诸如此类的东西,卡车仅包括大型卡车,但两者都不包括皮卡车。 该数据集可以在网址 https://www.cs.toronto.edu/~kriz/cifar.html 中进行下载,下载解压后包含以下几个文件。
二、环境配置
先安装 Anaconda,用来创建需要的环境,Anaconda 的安装可以参考:Anaconda 的安装及使用。 在安装好的 Anaconda 中安装 python 和 pytorch 以及代码中可能用到的包,可以参考:
在PyCharm中点击File——>Settings 打开如下界面,找到 Project 下的 Project interpreter ,再点击右边的齿轮,选择 Add。 在弹出的新界面中选择 Conda Environment,再选择Existing environment,在Interpreter这里找到你在 Anaconda 中 pytorch 环境下的 python 即可,然后点击OK。 可以看到,这里的 Project interpreter 已经发生了变化,点击 OK 即可。 上面两幅图中所包含的就是安装好python、pytorch以及本实验所用包后的信息了。
三、实验代码
本实验所用的代码有两个,一个是基于简单网络的,一个是基于VGG加深网络的。
1.简单网络的代码
import torch
import torchvision
import torchvision.transforms as transforms
import ssl
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
import numpy as np
import time
ssl._create_default_https_context = ssl._create_unverified_context
transform = transforms.Compose(
[transforms.RandomHorizontalFlip(),
transforms.RandomGrayscale(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
trainset = torchvision.datasets.CIFAR10(root='./cifar10', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=100, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./cifar10', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self,x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
def imshow(img):
img = img / 2 + 0.5
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
if __name__ == '__main__':
for epoch in range(20):
timestart = time.time()
running_loss = 0.0
for i,data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 500 == 499:
print('[%d ,%5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 500))
running_loss = 0.0
print('epoch %d cost %3f sec' % (epoch + 1, time.time()-timestart))
print('Finished Training')
dataiter = iter(testloader)
images, labels = dataiter.__next__()
imshow(torchvision.utils.make_grid(images))
print('GroundTruth:', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
outputs = net(Variable(images))
_, predicted = torch.max(outputs.data,1)
print('Predicted:', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
correct = 0
total = 0
for data in testloader:
images, labels = data
outputs = net(Variable(images))
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the network on the 10000 test images: %d %%' % (100*correct/total))
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for data in testloader:
images, labels = data
outputs = net(Variable(images))
_, predicted = torch.max(outputs.data, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i]
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))
2.VGG加深网络的代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import time
import os
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.RandomGrayscale(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
transform1 = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./cifar10_vgg', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=100, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./cifar10_vgg', train=False, download=True, transform=transform1)
testloader = torch.utils.data.DataLoader(testset, batch_size=50, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
self.pool1 = nn.MaxPool2d(2, 2)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU()
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
self.conv4 = nn.Conv2d(128, 128, 3, padding=1)
self.pool2 = nn.MaxPool2d(2, 2, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.relu2 = nn.ReLU()
self.conv5 = nn.Conv2d(128, 128, 3, padding=1)
self.conv6 = nn.Conv2d(128, 128, 3, padding=1)
self.conv7 = nn.Conv2d(128, 128, 1, padding=1)
self.pool3 = nn.MaxPool2d(2, 2, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.relu3 = nn.ReLU()
self.conv8 = nn.Conv2d(128, 256, 3, padding=1)
self.conv9 = nn.Conv2d(256, 256, 3, padding=1)
self.conv10 = nn.Conv2d(256, 256, 1, padding=1)
self.pool4 = nn.MaxPool2d(2, 2, padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.relu4 = nn.ReLU()
self.conv11 = nn.Conv2d(256, 512, 3, padding=1)
self.conv12 = nn.Conv2d(512, 512, 3, padding=1)
self.conv13 = nn.Conv2d(512, 512, 1, padding=1)
self.pool5 = nn.MaxPool2d(2, 2, padding=1)
self.bn5 = nn.BatchNorm2d(512)
self.relu5 = nn.ReLU()
self.fc14 = nn.Linear(512 * 4 * 4, 1024)
self.drop1 = nn.Dropout2d()
self.fc15 = nn.Linear(1024, 1024)
self.drop2 = nn.Dropout2d()
self.fc16 = nn.Linear(1024, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.pool1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.pool2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.conv5(x)
x = self.conv6(x)
x = self.conv7(x)
x = self.pool3(x)
x = self.bn3(x)
x = self.relu3(x)
x = self.conv8(x)
x = self.conv9(x)
x = self.conv10(x)
x = self.pool4(x)
x = self.bn4(x)
x = self.relu4(x)
x = self.conv11(x)
x = self.conv12(x)
x = self.conv13(x)
x = self.pool5(x)
x = self.bn5(x)
x = self.relu5(x)
x = x.view(-1, 512 * 4 * 4)
x = F.relu(self.fc14(x))
x = self.drop1(x)
x = F.relu(self.fc15(x))
x = self.drop2(x)
x = self.fc16(x)
return x
def train_sgd(self, device):
optimizer = optim.SGD(self.parameters(), lr=0.01)
path = 'weights.tar'
initepoch = 0
if os.path.exists(path) is not True:
loss = nn.CrossEntropyLoss()
else:
checkpoint = torch.load(path)
self.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
initepoch = checkpoint['epoch']
loss = checkpoint['loss']
for epoch in range(initepoch, 20):
timestart = time.time()
running_loss = 0.0
total = 0
correct = 0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = self(inputs)
l = loss(outputs, labels)
l.backward()
optimizer.step()
running_loss += l.item()
if i % 500 == 499:
print('[%d, %5d] loss: %.4f' %
(epoch, i, running_loss / 500))
running_loss = 0.0
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the %d tran images: %.3f %%' % (total,
100.0 * correct / total))
total = 0
correct = 0
torch.save({'epoch': epoch,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss
}, path)
print('epoch %d cost %3f sec' % (epoch, time.time() - timestart))
print('Finished Training')
def test(self, device):
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = self(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %.3f %%' % (100.0 * correct / total))
def classify(self, device):
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = self(images)
_, predicted = torch.max(outputs.data, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i]
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))
if __name__ == '__main__':
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = Net()
net = net.to(device)
net.train_sgd(device)
net.test(device)
net.classify(device)
四、运行结果
基于简单网络的代码运行过程如下。 代码运行后开始在cifar10的官网下载数据集 cifar-10-python.tar.gz 的压缩包。 下载成功后接着运行了20个epoch。 20个epoch运行完成后弹出了该图,可以看到画面是比较模糊的。 关闭该图后接着输出了各类识别的准确率。 基于VGG加深网络的代码运行过程如下,整个过程相当耗时。 最终输出各类识别的准确率。 绘制图对比一下,基于VGG加深网络的整体识别效果要比简单网络好很多。
五、遇到的问题
original error was: dll load failed: 找不到指定的模块。
这个问题在网上有好多的解决办法,我自己做了好多尝试,最后不知道是具体的哪一步起了作用,就可以运行程序了,总之将我尝试的方法都贴在下面吧,希望能够帮到你! 1、在Anaconda下安装python3.6版本(之前装了3.7和3.8都不太好使,有可能也不是版本的问题)。 2、先安装 matplotlib,再安装 pytorch(本实验用到了 matplotlib,我先安装的这一个)。 3、尝试过卸载 numpy 再重新安装(好多人通过这个方法解决了)。 4、卸载了电脑之前已安装的 python ,删除了其对应的环境变量(可能会与Anaconda下的python互相影响)。 5、配置 Anaconda 下的 python 环境变量。 上面的环境变量按照自己的安装路径配置。 6、在 PyCharm 下的Settings中把所有可以改变 Project Interpreter 的地方(下图左侧框住的这四个)都改为Anaconda 下的 python路径并保存。 7、看看自己存放 python 模块的文件夹下是否有之前版本 python 的文件,我这里就有一个名为_pycache_的文件夹,删除它。
总结
以上就是cifar-10图像分类的所有内容了,我在搭建环境上花费的时间比运行程序本身的时间都要长,所以在这个过程中遇到问题时要耐心一点,相信你也可以解决问题,让代码成功的跑起来! 参考网址: Alex Krizhevsky的主页 https://www.kaggle.com/c/cifar-10
|