IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> CNN模型合集 | Resnet变种-WideResnet解读 -> 正文阅读

[人工智能]CNN模型合集 | Resnet变种-WideResnet解读

所要解决的问题

Resnet被证明能够扩展到数千层,并且仍然具有改进的性能。然而,每提高一个百分点的精确度,就要花费将近两倍的层数,因此训练非常深的Resnet存在着减少特征重用的问题,这使得这些网络的训练速度非常慢。为所以该篇论文提出了一种新的体系结构,减少了网络的深度,增加了网络的宽度,这种结构称为宽残差网络(WRN),宽度即网络输出通道数,并通过实验证明它们远远优于常用的薄而深的网络结构。

设计思想

  • 提出了一种新的加宽网络,以提高模型性能;

  • 增加深度和宽度都有好处,但都会参数太大,导致正则化不够容易过拟合,wide-resnet使用dropout来正则化,防止模型训练过拟合;

  • 提高训练速度,相同参数,WideResNet的训练速度快于ResNet。

简介

网络

如上图所示,wide-resnet只比Resnet多了一个加宽因子k,原来架构相当于K=1,N表示组中的块数。

网络由一个初始卷积层conv1组成,然后是residual block的conv2、conv3和conv4的3组(每个大小为N),然后是平均池和最终分类层。在实验中,conv1的大小都是固定的,而引入的加宽因子k缩放了三组conv2-4中剩余块的宽度。

与原始架构相比,residual block中的批量归一化、激活和卷积的顺序从conv-BN-ReLU更改为BN-ReLU-conv。 卷积核都用3*3;正则化使用dropout,而ResNet用的BN在这里不好用了。

结构单元

结构单元

  • a是最基本的ResNet结构,b 是用了bottleneck(瓶颈)的ResNet结构;

  • d是在最基本的ResNet结构上加入dropout层的WideResNet结构。

增加Conv的Output channels数目即使用更多的conv filters进行计算,所谓的增宽block;

Residual block里面使用的conv层次结构

设B(M)表示剩余块结构,其中M是块中卷积层的核大小列表。例如,B(3,1)表示具有3×3和1×1两个卷积层的剩余块,B(3,1,1)表示3×3和1×1和1×1三个卷积层组成,以此类推;作者做实验设计了几个不同的conv层次,以此来验证residual block中最佳的conv结构。

设计的不同conv层次结构

实验结果

下图为以上各个结构最终能够获得的分类结果比较(注意在实验时作者为保证训练所用参数相同,因此不同类型block构成的网络的深度会有不同)。可见B(3,3)能取得最好的结果,这也证明了常用Residual block的有效性接下来的实验中,作者保持了使用B(3,3)这种Residual block结构。

Residual block中的conv层数

l表示单个Residual block里面conv层的数目,以d表示整体网络所具有的residual blocks的数目。通过保持整体训练所用参数不变,作者研究、分析了residual block内conv层数目不同所带来的性能结果差异。从中我们能够看出residual block里面包含2个conv层分类性能可达最优。

l数目对比结果

Residual block内宽度

k表示wide-resnet加宽因子,当我们增加加宽参数k时,必须保持总参数不变。为了找到一个最佳的数值,我们用k从2到12,深度从16到40进行实验。结果如下表所示。可以看出,当宽度因子从1增加到12时,所有具有40、22和16层的网络都可以看到精度上升。另一方面,当保持相同的固定加宽系数k=8或k=10且深度从16变为28时,也能提升相关性能,但是当我们进一步将深度增加到40时,精度会降低(例如,WRN-40-8的精度会降低到WRN-22-8)。

Residual block中Dropout的引入

加宽Residual block势必会带来训练参数的增加,为了避免模型陷入过拟合,作者在Residual block中引入了dropout。另外作者实验表明将Dropout加入在conv层之后比加入在identity mapping连接上可带来更好的效果。因此这里引入的Dropout被放在了Conv出来后的ReLu之后。下图中的结果反映出了Dropout带来的性能提升。

Dropout引入对网络性能的影响

如下图所示,总的来说,dropout显示出其自身是一种有效的正则化技术。它可以用来进一步改善加宽的结果,同时也是对加宽因子的补充。与传统的细高Resnet相比,矮胖WRN可具有更好的精度。

绿色的线表示wide-resnet损失误差曲线,红色表示原resnet损失曲线

计算效率

如下图所示,条形图旁边的数字表示CIFAR-10上的测试错误,顶部时间(ms)。测试时间是这些基准的比例分数。例如,宽WRN-40-4的速度是薄ResNet1001的8倍,同时具有大致相同的精度。

一些对比实验结果

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-25 18:06:59  更:2022-06-25 18:07:23 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/30 1:23:47-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码