IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 计算机视觉(四)相机标定 -> 正文阅读

[人工智能]计算机视觉(四)相机标定

摄像机几何

①? 世界坐标系与相机坐标系

② 相机坐标系与图像物理坐标系

这是一个将三维的坐标系转化为二维的坐标系,这两个坐标系之间的转换要通过几何投影模型关系获得

③ 图像物理坐标系与图像像素坐标系

首先以一个形象的例子来说明两个坐标系间的区别。物理坐标系是一个连续的概念,它是以毫米为单位,就好比某一观众在电影院里的具体坐标值(3.4,5.9);而像素坐标系是一个离散的概念,它是以像素作为单位,只能是整数值坐标,就好比某一观众在电影院里的位置是(第三排,第六列)。另外还需要注意的是,这两个坐标系的原点位置也不相同,物理坐标系将原点定为摄像机光轴与图像物理坐标系的交点位置,通常称其为主点;而像素坐标系则以像素图像的左上角为原点。

整体的变换为:

R为旋转变换矩阵,T为平移变换矩阵,K为内参数矩阵

内参数矩阵有五个自由度

a=焦距*像素相关的x尺度因子,b=焦距*像素相关的y尺度因子,o=像素坐标系旋转角度(像素非垂直而是有夹角),cx,cy=像素偏移量(像素坐标左下角到xy中心点距离)

标定板的选择

棋盘标定板:在对标定板进行初步检测后,可以以非常高的精度确定角点位置。这是因为角(数学上:鞍点)基本上是无限小的,因此在透视变换或镜头失真下是无偏的。但是在OpenCV中,整个棋盘必须在所有图像中可见才能被检测到。这通常使得从图像的边缘获取信息变得困难。这些区域通常是很好的信息来源,因为它们适当地约束了镜头失真模型。

圆形标定板:圆的确定可以非常精确,因为可以使用圆外围的所有像素,减少了图像噪声的影响。但是,在相机视角下,圆形被成像为椭圆。

张正友标定?

相机的标定是根据像素坐标系与世界坐标系的关系,利用一定的约束条件,来求解相机的内外参数以及畸变系数的过程

但是传统标定法的标定板是需要三维的,需要非常精确,这很难制作,而张正友教授提出的方法介于传统标定法和自标定法之间,但克服了传统标定法需要的高精度标定物的缺点,而仅需使用一个打印出来的棋盘格就可以。同时也相对于自标定而言,提高了精度,便于操作。因此张氏标定法被广泛应用于计算机视觉方面。


使用opencv的代码实现

import cv2
import numpy as np
import glob
 
# 找棋盘格角点
# 阈值
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
#棋盘格模板规格
w = 14  #内角点个数,内角点是和其他格子连着的点
h = 9
 
# 世界坐标系中的棋盘格点,例如(0,0,0), (1,0,0), (2,0,0) ....,(8,5,0),去掉Z坐标,记为二维矩阵
objp = np.zeros((w*h,3), np.float32)
objp[:,:2] = np.mgrid[0:w,0:h].T.reshape(-1,2)
# 储存棋盘格角点的世界坐标和图像坐标对
objpoints = [] # 在世界坐标系中的三维点
imgpoints = [] # 在图像平面的二维点
 
images = ['/Users/apple/Desktop/相机标定/7.jpg','/Users/apple/Desktop/相机标定/8.jpg','/Users/apple/Desktop/相机标定/9.jpg','/Users/apple/Desktop/相机标定/10.jpg'] # 标定所用图像
for fname in images:
    img = cv2.imread(fname)
    #print(img)
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    # 找到棋盘格角点
    # 棋盘图像(8位灰度或彩色图像)  棋盘尺寸  存放角点的位置
    ret, corners = cv2.findChessboardCorners(gray, (w,h),None)
    # 如果找到足够点对,将其存储起来
    print(ret)
    if ret == True:
        # 角点精确检测
        # 输入图像 角点初始坐标 搜索窗口为2*winsize+1 死区 求角点的迭代终止条件
        cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
        objpoints.append(objp)
        imgpoints.append(corners)
        # 将角点在图像上显示
        cv2.drawChessboardCorners(img, (w,h), corners, ret)
        cv2.imshow('findCorners',img)
        cv2.waitKey(1000)
cv2.destroyAllWindows()


print(objpoints, imgpoints)
#标定、去畸变
# 输入:世界坐标系里的位置 像素坐标 图像的像素尺寸大小 3*3矩阵,相机内参数矩阵 畸变矩阵
# 输出:标定结果 相机的内参数矩阵 畸变系数 旋转矩阵 平移向量
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
# mtx:内参数矩阵
# dist:畸变系数
# rvecs:旋转向量 (外参数)
# tvecs :平移向量 (外参数)
print (("ret:"),ret)
print (("mtx:\n"),mtx)        # 内参数矩阵
print (("dist:\n"),dist)      # 畸变系数   distortion cofficients = (k_1,k_2,p_1,p_2,k_3)
print (("rvecs:\n"),rvecs)    # 旋转向量  # 外参数
print (("tvecs:\n"),tvecs)    # 平移向量  # 外参数
# 去畸变
img2 = cv2.imread('/Users/apple/Desktop/相机标定/1.jpg')
h,w = img2.shape[:2]
# 我们已经得到了相机内参和畸变系数,在将图像去畸变之前,
# 我们还可以使用cv.getOptimalNewCameraMatrix()优化内参数和畸变系数,
# 通过设定自由自由比例因子alpha。当alpha设为0的时候,
# 将会返回一个剪裁过的将去畸变后不想要的像素去掉的内参数和畸变系数;
# 当alpha设为1的时候,将会返回一个包含额外黑色像素点的内参数和畸变系数,并返回一个ROI用于将其剪裁掉
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),0,(w,h)) # 自由比例参数
 
dst = cv2.undistort(img2, mtx, dist, None, newcameramtx)
# 根据前面ROI区域裁剪图片
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.jpg',dst)
 
# 反投影误差
# 通过反投影误差,我们可以来评估结果的好坏。越接近0,说明结果越理想。
# 通过之前计算的内参数矩阵、畸变系数、旋转矩阵和平移向量,使用cv2.projectPoints()计算三维点到二维图像的投影,
# 然后计算反投影得到的点与图像上检测到的点的误差,最后计算一个对于所有标定图像的平均误差,这个值就是反投影误差。
total_error = 0
for i in range(len(objpoints)):
    imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
    error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
    total_error += error
print (("total error: "), total_error/len(objpoints))

?因为opencv中的findChessboardCorners函数对检测图片质量的要求很高,所以非常容易返回为空,false,导致后续操作产生错误

经过百度,opencv4的?findChessboardCornersSB函数鲁棒性更高,似乎能解决这个问题

但是这里直接使用matlib来做

?

?最后导出相机参数

?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-25 18:06:59  更:2022-06-25 18:07:40 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/30 0:57:13-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码