IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> (Matlab实现)CNN卷积神经网络图片分类 -> 正文阅读

[人工智能](Matlab实现)CNN卷积神经网络图片分类

目录

摘要:

1.卷积神经网络介绍:

2.卷积神经网络(CNN)构建与训练:

2.1 CNN的输入图像

2.2 构建CNN网络

2.3 训练CNN网络

3.卷积神经网络(CNN)的实际分类测试:

4.实验代码:


摘要:

使用Matlab自带的深度学习工具箱构建卷积神经网络(CNN)进行图片分类,以识别并分类手写数字为例。首先将大量的图片数据导入;然后给不同种类的图片打上对应的分类的标签,划分为训练集和测试集;构建CNN网络其中包括3层2维卷积和3个池化层,全连接层及分类层;调整好输入输出格式对CNN进行训练及测试;最后结果表明CNN可以有效的对手写数字图像进行分类。

1.卷积神经网络介绍:

卷积神经网络? (Convolutional? Neural? Network,CNN)?这一概念最早由?Yann?Lecun?于?20?世纪?80?年代提出,是受到生物神经学中感受野的启发而发展起来的一种前馈神经网络结构模型。其作为一种有监督深度学习算法,端到端的数据处理模式,由于特征提取阶段不需要人工选择,而被广泛应用在各个领域的设备状态监测中。

2.卷积神经网络(CNN)构建与训练:

2.1 CNN的输入图像

本文CNN的输入图像如下:为1-9的手写数字,对应分类标签为1-9。

2.2 构建CNN网络

本文构建的CNN结构如下图所示:

  1. 图像输入层:用于指定图像大小,在本例中为 28×28×1。这些数字对应于高度、宽度和通道大小。数字数据由灰度图像组成,因此通道大小(颜色通道)为 1。对于彩色图像,通道大小为 3,对应于 RGB 值。
  2. 卷积层:在三层卷积层中,第一层有8个3*3的卷积核,第二层有16个3*3的卷积核,第三层有32个3*3的卷积核。卷积层逐渐加深,不断提取输入图像的特征。
  3. 批量归一化层批量归一化层对网络中的激活值和梯度传播进行归一化,使网络训练成为更简单的优化问题。在卷积层和非线性部分(例如 ReLU 层)之间使用批量归一化层,来加速网络训练并降低对网络初始化的敏感度。
  4. ReLU 层:批量归一化层后接一个非线性激活函数。最常见的激活函数是修正线性单元 (ReLU)。使用?reluLayer?创建 ReLU 层。
  5. 最大池化层:卷积层(带激活函数)有时会后跟下采样操作,以减小特征图的空间大小并删除冗余空间信息。通过下采样可以增加更深卷积层中的滤波器数量,而不会增加每层所需的计算量。下采样的一种方法是使用最大池化,在此示例中,该矩形区域的大小是2
  6. 全连接层:卷积层和下采样层后跟一个或多个全连接层。顾名思义,全连接层中的神经元将连接到前一层中的所有神经元。该层将先前层在图像中学习的所有特征组合在一起,以识别较大的模式。最后一个全连接层将特征组合在一起来对图像进行分类。因此,最后一个全连接层中的?OutputSize?参数等于目标数据中的类数。
  7. softmax 层:?softmax 激活函数对全连接层的输出进行归一化。
  8. 分类层:最终层是分类层。该层使用 softmax 激活函数针对每个输入返回的概率,将输入分配到其中一个互斥类并计算损失。

2.3 训练CNN网络

定义网络结构体后,指定训练选项。使用具有动量的随机梯度下降 (SGDM) 训练网络,初始学习率为 0.01。将最大训练轮数设置为 4。将数据分为训练集和测试集,对构建好的CNN进行训练,训练过程中的误差曲线如下:

3.卷积神经网络(CNN)的实际分类测试:

使用经过训练的网络预测验证数据的标签,并计算最终验证准确度。准确度是网络预测正确的标签的比例。在本例中,超过 99% 的预测标签与验证集的真实标签相匹配。

4.实验代码:

本文仅展示部分代码,需要全部代码点这里:🍞正在为您运送作品详情

clc;
clear;
close all;
%% 导入数据
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true,'LabelSource','foldernames');
% 图像展示
figure;
perm = randperm(10000,20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
end
%% 数据整理与归一化
labelCount = countEachLabel(imds);% 查看各类图片的数量及对应的分类标签
img = readimage(imds,1); % 设置输入图像的大小
fprintf('输入图像的大小为:');
disp(size(img));
% 指定训练集和测试集合
numTrainFiles = 750; % 指定训练集总共包含750个图像
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize'); % 将图片与对应的标签分开,即分成输入与输出
%% 网络定义以及训练
[layers,options] = Net_Built(imdsValidation);
analyzeNetwork(layers);
net = trainNetwork(imdsTrain,layers,options);
%% 网络分类预测
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation);
fprintf('分类测试的正确率为:');
disp(accuracy);
plot(YPred);
hold on
plot(YValidation);
hold off
legend('预测分类','实际分类');
title('CNN实际测试情况');
xlabel('样本');
ylabel('分类数值');

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-25 18:06:59  更:2022-06-25 18:09:36 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 2:45:44-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码