IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Deformable DETR环境配置和应用 -> 正文阅读

[人工智能]Deformable DETR环境配置和应用

准备工作:
Deformable DETR代码路径如下:

GitHub - fundamentalvision/Deformable-DETR: Deformable DETR: Deformable Transformers for End-to-End Object Detection.Deformable DETR: Deformable Transformers for End-to-End Object Detection. - GitHub - fundamentalvision/Deformable-DETR: Deformable DETR: Deformable Transformers for End-to-End Object Detection.https://github.com/fundamentalvision/Deformable-DETR

论文路径如下:

https://arxiv.org/abs/2010.04159icon-default.png?t=M4ADhttps://arxiv.org/abs/2010.04159这里如果想要更好的理解deformable detr可以先将transform的论文看一下,deformable detr是detr的改良版本。在本文中,我是用deformable detr作为目标检测的工具。代码中并没有利用此算法进行目标检测的demo,因此借鉴一些大佬的代码实现了一下。

环境配置:

我是在学校的服务器中使用anaconda配置的环境。

创建python环境:

conda create -n deformable_detr python=3.7 pip

激活环境:

conda activate deformable_detr

接下来安装pytorch,此代码要求PyTorch>=1.5.1, torchvision>=0.6.1。

我的CUDA的版本是10.1,因此在如下网址中找到相应的运行的命令。

PyTorch An open source machine learning framework that accelerates the path from research prototyping to production deployment.https://pytorch.org/

?点击黄色划线查找以前的pytorch的版本。

我使用的是轮子加速的安装方式:如上图所示。pytorch和CUDA的版本需要对应,否则会出现运行错误。

其他的安装库:

pip install -r requirements.txt

?到这里环境基本已经安装成功了,后面如果自己加代码室友detr的话,可能会报缺少某某库的问题,直接百度搜索安装教程,都很简单。

编译cuda操作。

cd ./models/ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py

?在运行test.py的时候,可能是服务器空间不够了,没有出现所有true,在最后两个测试中出现了“已杀死”错误。

但是发现我在后面使用的过程中并没有有影响和报错。

使用:

需要下载coco数据集:并将文件目录的格式按照如下方式放置:

?COCO 2017 dataset

code_root/
└── data/
    └── coco/
        ├── train2017/
        ├── val2017/
        └── annotations/
        	├── instances_train2017.json
        	└── instances_val2017.json

?我是没有训练,直接使用预训练模型。(前期运行了一下,官网中的train,好像也没有报错,没让他训练完,我就直接中断了)

训练:我将8改为了1,因为我只有一块gpu

GPUS_PER_NODE=8 ./tools/run_dist_launch.sh 8 ./configs/r50_deformable_detr.sh

评估:下载model

?运行命令:

<path to config file> --resume <path to pre-trained model> --eval

path to config file,路径如上图,在代码的configs文件夹下,model要和配置文件一致。

使用deformable detr,进行目标检测:展示

?

结束!!!!!!!

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-25 18:06:59  更:2022-06-25 18:10:37 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 2:45:11-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码