IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【深度学习 轻量型backbone】2022 EdgeViTs CVPR -> 正文阅读

[人工智能]【深度学习 轻量型backbone】2022 EdgeViTs CVPR

2022 EdgeViTs CVPR

港中文&三星提出EdgeViT:轻量级视觉Transformer新工作

论文链接: https://arxiv.org/abs/2205.03436 100MB谨慎下载。打开页面巨慢

论文代码:还没有公布

1. 简介

1.1 摘要

在计算机视觉领域,基于Self-attention的模型(如(ViTs))已经成为CNN之外的一种极具竞争力的架构。尽管越来越强的变种具有越来越高的识别精度,但由于Self-attention的二次复杂度,现有的ViT在计算和模型大小方面都有较高的要求。 虽然之前的CNN的一些成功的设计选择(例如,卷积和分层结构)已经被引入到最近的ViT中,但它们仍然不足以满足移动设备有限的计算资源需求。这促使人们最近尝试开发基于最先进的MobileNet-v2的轻型MobileViT,但MobileViT与MobileNet-v2仍然存在性能差距。

在这项工作中,作者进一步推进这一研究方向,引入了EdgeViTs,一个新的轻量级ViTs家族,也是首次使基于Self-attention的视觉模型在准确性和设备效率之间的权衡中达到最佳轻量级CNN的性能。 这是通过引入一个基于Self-attention和卷积的最优集成的高成本的local-global-local(LGL)信息交换瓶颈来实现的。对于移动设备专用的评估,不依赖于不准确的proxies,如FLOPs的数量或参数,而是采用了一种直接关注设备延迟和能源效率的实用方法。

1.2 存在的问题

文章指出,目前基于VIT,做出轻量化的操作,一般有3种

  • 使用具有空间分辨率(即token序列长度)的分层体系结构,在各个阶段逐步向下采样
  • 用于控制输入token序列长度和参数共享的局部分组自我注意机制
  • 池化注意方案以因子对key和value进行子抽样

这些的设计呢?趋势都是设计出更复杂,更强大的ViT,来挑战性能更好的CNN,但是呢还不能满足手机运行的实用效果

  • 推理效率需要高(例如低延迟和能源消耗),这样运行成本就普遍负担得起,更多设备上的应用程序逗可以支持应用,这才是我们在实践中真正关心的直接指标。
  • 模型尺寸(即参数量)对于现今的移动设备来说是负担得起的。
  • 实现的简易性在实际应用中也是至关重要的。对于更广泛的部署,有必要使用通用深度学习框架(如ONNX、TensorRT和TorchScript)支持和优化的标准计算操作高效地实现模型,而不需要花费昂贵的代价为每个网络框架进行专门化设计。

本文贡献如下:

(1)我们从实际设备上部署和执行的角度研究轻量级ViT的设计;

(2)为了获得最佳的延展性和部署,我们提出了一种新的高效ViT家族,称为EdgeViT,它是基于使用标准初始模块的自注意力机制的最优分解而设计的。

(3)关于设备上的性能,为了现实部署的相关性,我们直接考虑不同模型的延迟和能源消耗,而不是依赖于其他标准,如FLOPs数量或参数量。

2. 网络

2.1 总体设计

image-20220615111749282

  • 图a就是总体框架,类似于resnet结构。为了设计适合移动/边缘设备的轻量化ViT,我们采用最近ViT变体中使用的分层金字塔网络结构,
  • 图b引入了一个开销高效的局部-全局-局部(LGL)bottleneck,LGL通过稀疏注意力模块进一步减少了自注意力的开销
  • 图c,能实现更好的准确性和延迟平衡。

2.2 局部-全局-局部bottleneck(LGL)

  • Self-attention已被证明是非常有效的学习全局信息或长距离空间依赖性的方法,这是视觉识别的关键。
  • 另一方面,由于图像具有高度的空间冗余(例如,附近的Patch在语义上是相似的),将注意力集中到所有的空间Patch上,即使是在一个下采样的特征映射中,也是低效的。

因此,与以前在每个空间位置执行Self-attention的Transformer Block相比,LGL Bottleneck只对输入Token的子集计算Self-attention,但支持完整的空间交互,如在标准的Multi-Head Self-attention(MHSA)中。既会减少Token的作用域,同时也保留建模全局和局部上下文的底层信息流。

这里引入了3种有效的操作:

  • Local aggregation:仅集成来自局部近似Token信号的局部聚合
  • Global sparse attention:建模一组代表性Token之间的长期关系,其中每个Token都被视为一个局部窗口的代表;
  • Local propagation:将委托学习到的全局上下文信息扩散到具有相同窗口的非代表Token。

image-20220622092858622

将这些结合起来,LGL Bottleneck就能够以低计算成本在同一特征映射中的任何一对Token之间进行信息交换。下面将详细说明每一个组成部分:

Local aggregation

对于每个Token,利用Depth-wisePoint-wise卷积在大小为k×k的局部窗口中聚合信息(图3(a))。

class LocalAgg(nn.Module):
    """
    局部模块,LocalAgg
    卷积操作能够有效的提取局部特征
    为了能够降低计算量,使用 逐点卷积+深度可分离卷积实现
    """

    def __init__(self, channels):
        super(LocalAgg, self).__init__()
        self.bn = nn.BatchNorm2d(channels)
        # 逐点卷积,相当于全连接层。增加非线性,提高特征提取能力
        self.pointwise_conv_0 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
        # 深度可分离卷积
        self.depthwise_conv = nn.Conv2d(channels, channels, padding=1, kernel_size=3, groups=channels, bias=False)
        # 归一化
        self.pointwise_prenorm_1 = nn.BatchNorm2d(channels)
        # 逐点卷积,相当于全连接层,增加非线性,提高特征提取能力
        self.pointwise_conv_1 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.bn(x)
        x = self.pointwise_conv_0(x)
        x = self.depthwise_conv(x)
        x = self.pointwise_prenorm_1(x)
        x = self.pointwise_conv_1(x)
        return x

Global sparse attention

对均匀分布在空间中的稀疏代表性Token集进行采样,每个r×r窗口有一个代表性Token。这里,r表示子样本率。然后,只对这些被选择的Token应用Self-attention(图3(b))。这与所有现有的ViTs不同,在那里,所有的空间Token都作为Self-attention计算中的query被涉及到。

class GlobalSparseAttention(nn.Module):
    """
    全局模块,选取特定的tokens,进行全局作用
    """

    def __init__(self, channels, r, heads):
        """

        Args:
            channels: 通道数
            r: 下采样倍率
            heads: 注意力头的数目
                   这里使用的是多头注意力机制,MHSA,multi-head self-attention
        """
        super(GlobalSparseAttention, self).__init__()
        #
        self.head_dim = channels // heads
        # 扩张的
        self.scale = self.head_dim ** -0.5

        self.num_heads = heads

        # 使用平均池化,来进行特征提取
        self.sparse_sampler = nn.AvgPool2d(kernel_size=1, stride=r)

        # 计算qkv
        self.qkv = nn.Conv2d(channels, channels * 3, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.sparse_sampler(x)
        B, C, H, W = x.shape
        q, k, v = self.qkv(x).view(B, self.num_heads, -1, H * W).split([self.head_dim,self.head_dim,self.head_dim],dim=2)
        # 计算特征图 attention map
        attn = (q.transpose(-2, -1) @ k).softmax(-1)
        # value和特征图进行计算,得出全局注意力的结果
        x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W)
        # print(x.shape)
        return x

Local propagation

通过转置卷积将代表性 Token 中编码的全局上下文信息传播到它们的相邻的 Token 中(图 3?)。

class LocalPropagation(nn.Module):
    def __init__(self, channels, r):
        super(LocalPropagation, self).__init__()

        # 组归一化
        self.norm = nn.GroupNorm(num_groups=1, num_channels=channels)
        # 使用转置卷积 恢复 GlobalSparseAttention模块 r倍的下采样率
        self.local_prop = nn.ConvTranspose2d(channels,
                                             channels,
                                             kernel_size=r,
                                             stride=r,
                                             groups=channels)
        # 使用逐点卷积
        self.proj = nn.Conv2d(channels, channels, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.local_prop(x)
        x = self.norm(x)
        x = self.proj(x)
        return x

最终, LGL bottleneck 可以表达为:
X = L o c a l A g g ( N o r m ( X i n ) ) + X i n Y = F F N ( N o r m ( X ) ) + X Z = L o c a l P r o p ( G l o b a l S p a r s e A t t e n ( N o r m ( Y ) ) ) + Y X o u t = F F N ( N o r m ( Z ) ) + Z \begin{aligned} X&=LocalAgg(Norm(X_{in}))+X_{in} \\ Y&=FFN(Norm(X))+X \\ Z&=LocalProp(GlobalSparseAtten(Norm(Y)))+Y \\ X_{out}&=FFN(Norm(Z))+Z \end{aligned} XYZXout??=LocalAgg(Norm(Xin?))+Xin?=FFN(Norm(X))+X=LocalProp(GlobalSparseAtten(Norm(Y)))+Y=FFN(Norm(Z))+Z?

LGL 的代码为

import torch
import torch.nn as nn


class Residual(nn.Module):
    """
    残差网络
    """

    def __init__(self, module):
        super().__init__()
        self.module = module

    def forward(self, x):
        return x + self.module(x)


class ConditionalPositionalEncoding(nn.Module):
    """
    条件编码信息
    """

    def __init__(self, channels):
        super(ConditionalPositionalEncoding, self).__init__()
        self.conditional_positional_encoding = nn.Conv2d(channels, channels, kernel_size=3, padding=1, groups=channels,
                                                         bias=False)

    def forward(self, x):
        x = self.conditional_positional_encoding(x)
        return x


class MLP(nn.Module):
    """
    FFN 模块
    """

    def __init__(self, channels):
        super(MLP, self).__init__()
        expansion = 4
        self.mlp_layer_0 = nn.Conv2d(channels, channels * expansion, kernel_size=1, bias=False)
        self.mlp_act = nn.GELU()
        self.mlp_layer_1 = nn.Conv2d(channels * expansion, channels, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.mlp_layer_0(x)
        x = self.mlp_act(x)
        x = self.mlp_layer_1(x)
        return x


class LocalAgg(nn.Module):
    """
    局部模块,LocalAgg
    卷积操作能够有效的提取局部特征
    为了能够降低计算量,使用 逐点卷积+深度可分离卷积实现
    """

    def __init__(self, channels):
        super(LocalAgg, self).__init__()
        self.bn = nn.BatchNorm2d(channels)
        # 逐点卷积,相当于全连接层。增加非线性,提高特征提取能力
        self.pointwise_conv_0 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
        # 深度可分离卷积
        self.depthwise_conv = nn.Conv2d(channels, channels, padding=1, kernel_size=3, groups=channels, bias=False)
        # 归一化
        self.pointwise_prenorm_1 = nn.BatchNorm2d(channels)
        # 逐点卷积,相当于全连接层,增加非线性,提高特征提取能力
        self.pointwise_conv_1 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.bn(x)
        x = self.pointwise_conv_0(x)
        x = self.depthwise_conv(x)
        x = self.pointwise_prenorm_1(x)
        x = self.pointwise_conv_1(x)
        return x


class GlobalSparseAttention(nn.Module):
    """
    全局模块,选取特定的tokens,进行全局作用
    """

    def __init__(self, channels, r, heads):
        """

        Args:
            channels: 通道数
            r: 下采样倍率
            heads: 注意力头的数目
                   这里使用的是多头注意力机制,MHSA,multi-head self-attention
        """
        super(GlobalSparseAttention, self).__init__()
        #
        self.head_dim = channels // heads
        # 扩张的
        self.scale = self.head_dim ** -0.5

        self.num_heads = heads

        # 使用平均池化,来进行特征提取
        self.sparse_sampler = nn.AvgPool2d(kernel_size=1, stride=r)

        # 计算qkv
        self.qkv = nn.Conv2d(channels, channels * 3, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.sparse_sampler(x)
        B, C, H, W = x.shape
        q, k, v = self.qkv(x).view(B, self.num_heads, -1, H * W).split([self.head_dim, self.head_dim, self.head_dim],
                                                                       dim=2)
        # 计算特征图 attention map
        attn = (q.transpose(-2, -1) @ k).softmax(-1)
        # value和特征图进行计算,得出全局注意力的结果
        x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W)
        # print(x.shape)
        return x


class LocalPropagation(nn.Module):
    def __init__(self, channels, r):
        super(LocalPropagation, self).__init__()

        # 组归一化
        self.norm = nn.GroupNorm(num_groups=1, num_channels=channels)
        # 使用转置卷积 恢复 GlobalSparseAttention模块 r倍的下采样率
        self.local_prop = nn.ConvTranspose2d(channels,
                                             channels,
                                             kernel_size=r,
                                             stride=r,
                                             groups=channels)
        # 使用逐点卷积
        self.proj = nn.Conv2d(channels, channels, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.local_prop(x)
        x = self.norm(x)
        x = self.proj(x)
        return x


class LGL(nn.Module):
    def __init__(self, channels, r, heads):
        super(LGL, self).__init__()

        self.cpe1 = ConditionalPositionalEncoding(channels)
        self.LocalAgg = LocalAgg(channels)
        self.mlp1 = MLP(channels)
        self.cpe2 = ConditionalPositionalEncoding(channels)
        self.GlobalSparseAttention = GlobalSparseAttention(channels, r, heads)
        self.LocalPropagation = LocalPropagation(channels, r)
        self.mlp2 = MLP(channels)

    def forward(self, x):
        # 1. 经过 位置编码操作
        x = self.cpe1(x) + x
        # 2. 经过第一步的 局部操作
        x = self.LocalAgg(x) + x
        # 3. 经过一个前馈网络
        x = self.mlp1(x) + x
        # 4. 经过一个位置编码操作
        x = self.cpe2(x) + x
        # 5. 经过一个全局捕捉的操作。长和宽缩小 r倍。然后通过一个
        # 6. 经过一个 局部操作部
        x = self.LocalPropagation(self.GlobalSparseAttention(x)) + x
        # 7. 经过一个前馈网络
        x = self.mlp2(x) + x

        return x


if __name__ == '__main__':
    # 64通道,图片大小为32*32
    x = torch.randn(size=(1, 64, 32, 32))
    # 64通道,下采样2倍,8个头的注意力
    model = LGL(64, 2, 8)
    out = model(x)
    print(out.shape)

3. 代码

import torch
import torch.nn as nn

# edgevits的配置信息
edgevit_configs = {
    'XXS': {
        'channels': (36, 72, 144, 288),
        'blocks': (1, 1, 3, 2),
        'heads': (1, 2, 4, 8)
    }
    ,
    'XS': {
        'channels': (48, 96, 240, 384),
        'blocks': (1, 1, 2, 2),
        'heads': (1, 2, 4, 8)
    }
    ,
    'S': {
        'channels': (48, 96, 240, 384),
        'blocks': (1, 2, 3, 2),
        'heads': (1, 2, 4, 8)
    }
}

HYPERPARAMETERS = {
    'r': (4, 2, 2, 1)
}


class Residual(nn.Module):
    """
    残差网络
    """

    def __init__(self, module):
        super().__init__()
        self.module = module

    def forward(self, x):
        return x + self.module(x)


class ConditionalPositionalEncoding(nn.Module):
    """
    
    """

    def __init__(self, channels):
        super(ConditionalPositionalEncoding, self).__init__()
        self.conditional_positional_encoding = nn.Conv2d(channels, channels, kernel_size=3, padding=1, groups=channels,
                                                         bias=False)

    def forward(self, x):
        x = self.conditional_positional_encoding(x)
        return x


class MLP(nn.Module):
    """
    FFN 模块
    """

    def __init__(self, channels):
        super(MLP, self).__init__()
        expansion = 4
        self.mlp_layer_0 = nn.Conv2d(channels, channels * expansion, kernel_size=1, bias=False)
        self.mlp_act = nn.GELU()
        self.mlp_layer_1 = nn.Conv2d(channels * expansion, channels, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.mlp_layer_0(x)
        x = self.mlp_act(x)
        x = self.mlp_layer_1(x)
        return x


class LocalAgg(nn.Module):
    """
    局部模块,LocalAgg
    卷积操作能够有效的提取局部特征
    为了能够降低计算量,使用 逐点卷积+深度可分离卷积实现
    """

    def __init__(self, channels):
        super(LocalAgg, self).__init__()
        self.bn = nn.BatchNorm2d(channels)
        # 逐点卷积,相当于全连接层。增加非线性,提高特征提取能力
        self.pointwise_conv_0 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)
        # 深度可分离卷积
        self.depthwise_conv = nn.Conv2d(channels, channels, padding=1, kernel_size=3, groups=channels, bias=False)
        # 归一化
        self.pointwise_prenorm_1 = nn.BatchNorm2d(channels)
        # 逐点卷积,相当于全连接层,增加非线性,提高特征提取能力
        self.pointwise_conv_1 = nn.Conv2d(channels, channels, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.bn(x)
        x = self.pointwise_conv_0(x)
        x = self.depthwise_conv(x)
        x = self.pointwise_prenorm_1(x)
        x = self.pointwise_conv_1(x)
        return x


class GlobalSparseAttention(nn.Module):
    """
    全局模块,选取特定的tokens,进行全局作用
    """

    def __init__(self, channels, r, heads):
        """

        Args:
            channels: 通道数
            r: 下采样倍率
            heads: 注意力头的数目
                   这里使用的是多头注意力机制,MHSA,multi-head self-attention
        """
        super(GlobalSparseAttention, self).__init__()
        #
        self.head_dim = channels // heads
        # 扩张的
        self.scale = self.head_dim ** -0.5

        self.num_heads = heads

        # 使用平均池化,来进行特征提取
        self.sparse_sampler = nn.AvgPool2d(kernel_size=1, stride=r)

        # 计算qkv
        self.qkv = nn.Conv2d(channels, channels * 3, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.sparse_sampler(x)
        B, C, H, W = x.shape
        q, k, v = self.qkv(x).view(B, self.num_heads, -1, H * W).split([self.head_dim, self.head_dim, self.head_dim],
                                                                       dim=2)
        # 计算特征图 attention map
        attn = (q.transpose(-2, -1) @ k).softmax(-1)
        # value和特征图进行计算,得出全局注意力的结果
        x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W)
        # print(x.shape)
        return x


class LocalPropagation(nn.Module):
    def __init__(self, channels, r):
        super(LocalPropagation, self).__init__()

        # 组归一化
        self.norm = nn.GroupNorm(num_groups=1, num_channels=channels)
        # 使用转置卷积 恢复 GlobalSparseAttention模块 r倍的下采样率
        self.local_prop = nn.ConvTranspose2d(channels,
                                             channels,
                                             kernel_size=r,
                                             stride=r,
                                             groups=channels)
        # 使用逐点卷积
        self.proj = nn.Conv2d(channels, channels, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.local_prop(x)
        x = self.norm(x)
        x = self.proj(x)
        return x


class LGL(nn.Module):
    def __init__(self, channels, r, heads):
        super(LGL, self).__init__()

        self.cpe1 = ConditionalPositionalEncoding(channels)
        self.LocalAgg = LocalAgg(channels)
        self.mlp1 = MLP(channels)
        self.cpe2 = ConditionalPositionalEncoding(channels)
        self.GlobalSparseAttention = GlobalSparseAttention(channels, r, heads)
        self.LocalPropagation = LocalPropagation(channels, r)
        self.mlp2 = MLP(channels)

    def forward(self, x):
        # 1. 经过 位置编码操作
        x = self.cpe1(x) + x
        # 2. 经过第一步的 局部操作
        x = self.LocalAgg(x) + x
        # 3. 经过一个前馈网络
        x = self.mlp1(x) + x
        # 4. 经过一个位置编码操作
        x = self.cpe2(x) + x
        # 5. 经过一个全局捕捉的操作。长和宽缩小 r倍。然后通过一个
        # 6. 经过一个 局部操作部
        x = self.LocalPropagation(self.GlobalSparseAttention(x)) + x
        # 7. 经过一个前馈网络
        x = self.mlp2(x) + x

        return x


class DownSampleLayer(nn.Module):
    def __init__(self, dim_in, dim_out, r):
        super(DownSampleLayer, self).__init__()
        self.downsample = nn.Conv2d(dim_in,
                                    dim_out,
                                    kernel_size=r,
                                    stride=r)
        self.norm = nn.GroupNorm(num_groups=1, num_channels=dim_out)

    def forward(self, x):
        x = self.downsample(x)
        x = self.norm(x)
        return x

    # if __name__ == '__main__':


#     # 64通道,图片大小为32*32
#     x = torch.randn(size=(1, 64, 32, 32))
#     # 64通道,下采样2倍,8个头的注意力
#     model = LGL(64, 2, 8)
#     out = model(x)
#     print(out.shape)


class EdgeViT(nn.Module):

    def __init__(self, channels, blocks, heads, r=[4, 2, 2, 1], num_classes=1000, distillation=False):
        super(EdgeViT, self).__init__()
        self.distillation = distillation
        l = []
        in_channels = 3
        # 主体部分
        for stage_id, (num_channels, num_blocks, num_heads, sample_ratio) in enumerate(zip(channels, blocks, heads, r)):
            # print(num_channels,num_blocks,num_heads,sample_ratio)
            # print(in_channels)
            l.append(DownSampleLayer(dim_in=in_channels, dim_out=num_channels, r=4 if stage_id == 0 else 2))
            for _ in range(num_blocks):
                l.append(LGL(channels=num_channels, r=sample_ratio, heads=num_heads))

            in_channels = num_channels

        self.main_body = nn.Sequential(*l)
        self.pooling = nn.AdaptiveAvgPool2d(1)

        self.classifier = nn.Linear(in_channels, num_classes, bias=True)

        if self.distillation:
            self.dist_classifier = nn.Linear(in_channels, num_classes, bias=True)
        # print(self.main_body)

    def forward(self, x):
        # print(x.shape)
        x = self.main_body(x)
        x = self.pooling(x).flatten(1)

        if self.distillation:
            x = self.classifier(x), self.dist_classifier(x)

            if not self.training:
                x = 1 / 2 * (x[0] + x[1])
        else:
            x = self.classifier(x)

        return x


def EdgeViT_XXS(pretrained=False):
    model = EdgeViT(**edgevit_configs['XXS'])

    if pretrained:
        raise NotImplementedError

    return model


def EdgeViT_XS(pretrained=False):
    model = EdgeViT(**edgevit_configs['XS'])

    if pretrained:
        raise NotImplementedError

    return model


def EdgeViT_S(pretrained=False):
    model = EdgeViT(**edgevit_configs['S'])

    if pretrained:
        raise NotImplementedError

    return model


if __name__ == '__main__':
    x = torch.randn(size=(1, 3, 224, 224))
    model = EdgeViT_S(False)
    # y = model(x)
    # print(y.shape)

    from thop import profile

    input = torch.randn(1, 3, 224, 224)
    flops, params = profile(model, inputs=(input,))
    print("flops:{:.3f}G".format(flops /1e9))
    print("params:{:.3f}M".format(params /1e6))


参考链接

(2条消息) 轻量级网络EdgeViTs论文翻译_胖虎记录学习的博客-CSDN博客

https://zhuanlan.zhihu.com/p/516209737

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-26 16:54:39  更:2022-06-26 16:56:34 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 2:44:03-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码