IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> YOLOV1学习总结 -> 正文阅读

[人工智能]YOLOV1学习总结


本文是对【同济子豪兄】对YOLOV1讲解所做得总结

预测阶段01

在这里插入图片描述
输入图像经过卷积神经网络后,输出7x7x30的向量。7x7表示将输入图像分为7x7个grid cell, 每个grid cell生成两个预测框,如下图所示,

在这里插入图片描述

每个预测框包含5个数据:x, y, w, h, c (c表示该框预测到物体的概率),预测框的边缘线越粗,其c值就越大。
由于使用的是Pascal VOC 数据集,共20个预测类别,所以每个grid cell包含30个数据(2*5 + 20 = 30),20表示该 grid cell 预测结果为某一类别的概率。
下图表示每个grid cell预测的类别,每个grid cell只能预测一个类别。

在这里插入图片描述

预测阶段02-NMS

1.将每个 grid cell 的两个 bbox 预测的20个类别的概率按照下图的方式排列:其中bb1的20个数值表示,该bbox置信度 x 20个预测类别的概率

在这里插入图片描述

假如第一排为dog的预测概率,将其排列如下:

在这里插入图片描述

按照从高到低的顺序排列,从第二个bbox开始,依次拿每个bbox的概率与第一个bbox的概率比较,如果IOU大于阈值,证明这两个bbox预测的为同一个物体,将后面的bbox的预测概率置0。如果IOU小于阈值,则不做改变。再依次和第二个bbox的概率进行比较,如下图所示:

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

训练阶段

深度学习(监督学习)的训练,是通过梯度下降和反向传播的方法,迭代地去微调神经元中的权重,来使得损失函数最小化的过程。
如图所示,绿色圆点为ground truth的中心点,其所在的 grid cell 生成的bbox用来预测该ground truth。
1、2号框均为同一个 grid cell 的 bbox, 1号框与 ground truth 的IOU较大,因此由1号框负责拟合该ground truth, 损失函数的设计目的就是尽可能让1号框与3号框一致。
在这里插入图片描述
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-26 16:54:39  更:2022-06-26 16:57:05 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 4:04:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码