IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> KNN算法及性能评估之鸢尾花特征分类【机器学习】 -> 正文阅读

[人工智能]KNN算法及性能评估之鸢尾花特征分类【机器学习】

一.前言

1.1 本文原理

KNN算法:通过在整个训练集中搜索k个最相似的实例(邻居)并汇总这些k个实例的输出变量来预测新的数据点。它可以用于分类和回归,是一种监督学习算法。
混淆矩阵:至少有m*m的表。前m行和m列的条目CMJ表示分类器标记为J的类I元组数。

1.2 本文目的

  1. 使用scikit-learn的数据归一化函数,对鸢尾花数据进行归一化;
  2. 使用scikit-learn的切分数据集函数,将鸢尾花数据切分为训练数据集和测试数据集;
  3. 使用scikit-learn的KNN算法,对鸢尾花进行分类训练和测试(即预测);
  4. 使用scikit-learn的混淆矩阵函数,显示性能评估的混淆矩阵以及准确率,并分析混淆矩阵的内容;

二.实验过程

2.1 使用scikit-learn的数据归一化函数,对鸢尾花数据进行归一化;

老规矩,先使用load_iris模块,里面有150组鸢尾花特征数据,我们可以拿来进行学习特征分类。
如下代码:

from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target

引入混淆矩阵confusion_matrix函数,评估方法函数accuracy_score,数据预处理函数模块preprocessing如下:

from sklearn.metrics import confusion_matrix,accuracy_score,recall_score,precision_score
from sklearn.model_selection import train_test_split
from sklearn import preprocessing

在这里插入图片描述

数据预处理:按列归一化

iris_X=preprocessing.scale(X)

输出归一化结果如下:

print(iris_X)

在这里插入图片描述

2.2 使用scikit-learn的切分数据集函数,将鸢尾花数据切分为训练数据集和测试数据集;

随机划分训练集和测试集切分数据集函数如下:

X_train,X_test,y_train,y_test =train_test_split(iris_X,y,test_size=0.3,random_state=0)

功能是从样本中随机的按比例选取train_data和test_data
我们输出来看一下:

print(X_train)
print(X_test)
print(y_train)
print(y_test)

在这里插入图片描述

2.3使用scikit-learn的KNN算法,对鸢尾花进行分类训练和测试(即预测);

KNN分类模型如下:
引入k近邻算法模块:

from sklearn import neighbors

KNeighborsClassifier用于实现k近邻投票算法的分类器如下:

model=neighbors.KNeighborsClassifier(n_neighbors=3)

查询使用的邻居数。就是k-NN的k的值,选取最近的k个点。这里选择最近的3个点。

模型训练如下:

model.fit(X_train,y_train)

模型预测如下:

v_pred=model.predict(X_test)

输出鸢尾花特征分类结果如下:

print(v_pred)

在这里插入图片描述

2.4 使用scikit-learn的混淆矩阵函数,显示性能评估的混淆矩阵以及准确率,并分析混淆矩阵的内容;

使用混淆矩阵confusion_matrix:

confusion_matrix(y_test,v_pred)

输出混淆矩阵:

print(confusion_matrix(y_test,v_pred))

输出准确率:
在这里插入图片描述

print("准确率:%.3f"% accuracy_score(y_test,v_pred))

结果如下:
在这里插入图片描述

2.5 分析混淆矩阵的内容以及总结

sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
y_true: 是样本真实分类结果 y_pred: 是样本预测分类结果 labels:是所给出的类别,通过这个可对类别进行选择 sample_weight : 样本权重
预测正确的结果占总样本的百分比的97.8,本次KNN算法对鸢尾花进行分类训练和测试效果非常的准确。
总结:
1.熟悉机器学习之KNN算法及性能评估方法
2.使用KNN算法解决问题并做性能评估
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-06-29 19:04:19  更:2022-06-29 19:05:07 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 2:02:01-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码