感知SOTA模型:
提示:整理了感知算法中性能优异的模型
1. 激光雷达目标检测(WXF)
-
SFD 代码:https://github.com/LittlePey/SFD 论文:https://xueshu.baidu.com/usercenter/paper/show?paperid=123q0xs0a3010an0qh1w0mn0xj564930 -
BtcDet 代码:https://github.com/Xharlie/BtcDet 论文:https://arxiv.org/pdf/2112.02205.pdf -
SE-SSD 代码:https://github.com/Vegeta2020/SE-SSD 论文:https://arxiv.org/abs/2104.09804 -
Focals Conv
代码:https://github.com/dvlab-research/FocalsConv 论文:https://arxiv.org/abs/2204.12463
- CLOCs
代码:https://github.com/pangsu0613/CLOCs 论文:https://arxiv.org/pdf/2009.00784.pdf
2.激光雷达语义分割(GNN)
- SPVCNN++ ,SPVNAS
代码:https://github.com/mit-han-lab/spvnas 论文:https://arxiv.org/pdf/2007.16100.pdf
- Cylinder3D++, Cylinder3D
代码:https://github.com/xinge008/Cylinder3D 论文:https://arxiv.org/pdf/2011.10033.pdf
-
JS3C-Net 代码:https://github.com/yanx27/JS3C-Net 论文:https://arxiv.org/abs/2012.03762 -
Vis-PolarNet、PolarNet 代码:https://github.com/AbangLZU/PolarSeg.git https://github.com/edwardzhou130/PolarSeg 论文:https://arxiv.org/abs/2003.14032
2. 视觉目标检测(PYL)
-
swin transformer v2 coco数据集上的box-map(目标检测方面)是63.1。 代码:https://github.com/microsoft/Swin-Transformer 论文:https://arxiv.org/pdf/2111.09883v1.pdf -
yolov5x6 在coco数据集上的map是55.8。 代码:https://github.com/ultralytics/yolov5/releases 论文:暂无。
3. 视觉语义分割
4. 视觉车牌检测
5. 视觉姿态识别
|