| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 《ASV-Subtools 声纹识别实战》课程 -> 正文阅读 |
|
[人工智能]《ASV-Subtools 声纹识别实战》课程 |
AI工匠学堂https://xjw.h5.xeknow.com/s/2XhsYq ASV-Subtools简介近年来,随着深度学习的快速发展,简单易用、性能稳定、开发高效的深度学习框架越来越被科研和工业界人员所需要。其中,TensorFlow和Pytorch则是目前深度学习的主流框架。为了方便进行声纹识别技术相关的研究,厦门大学智能语音实验室(XMUSPEECH)团队经过近两年的开发,基于Kaldi和PyTorch推出了一套高效、易于开发扩展的声纹识别开源工具—ASV-Subtools。ASV-Subtools的设计理念在于代码高度复用的同时保持模块分化和开发自由。因此,体现出以下四个特点:
目前,该工具已在GitHub上发布。关于该工具的介绍论文(ASV-Subtools: Open Source Toolkit for Automatic Speaker Verification),已被语音顶会 ICASSP 2021?录用。 ? 实战性能ASV-Subtools充分结合了Kaldi 在语音信号和后端处理的高效性以及PyTorch 开发和训练神经网络的便捷灵活性。封装了很多实用、高效的脚本,其中包括数据集处理、数据扩增、特征提取、静音消除、Kaldi模型训练、x-vector加速提取、后端打分和指标计算等。此外,该工具还提供了大量高层框架和神经网络训练相关的脚本,这也是ASV-Subtools的核心内容。相比按序采样,ASV-Subtools还提供了说话人均衡采样来解决说话人不均衡问题。网络训练完之后,ASV-Subtools将提取出来的x-vector 写为ark格式文件,利用Kaldi进行后端处理并进行相似度判别打分。 前端训练框架ASV-Subtools框架结构 ASV-Subtools整体框架结构如图所示。提供了大量模型组件(nnet),方便开发者进行网络配置,当然,用户也可直接选择使用PyTorch提供的原生组件进行构建。框架的底层为基于Python实现的各个基本对象,如对应到Kaldi映射目录的Kaldi_dataset,采样方法samples,模型基本组件components、activation和loss,训练有关的训练流程trainer,训练进度显示reporter,优化器以及学习率综合配置等。 后端优化考虑到数据集的规模往往较为庞大,该工具对所有数据集处理脚本均进行了速度优化,如代码上的时间复杂度优化或使用多进程进行提速。此外,由于后端处理有很多可能的复杂组合,用于后端打分的训练集、注册集和测试集之间也有较多种处理方法,为了用户灵活配置,ASV-Subtools中实现了一个高效的打分脚本(scoreSet.sh):当给定数据处理顺序,该脚本通过图的深度遍历方法自动将整个打分过程连接起来。具体如图所示,这极大地方便了用户进行后端调试,无需每次重写代码。 后端打分集脚本原理示意图 基线结果目前为止,ASV-Subtools已开发了众多声纹识别中常用的算法和网络架构,例如使用一维卷积等价实现的标准x-vector网络,还集成了多种PLDA自适应的技术,解决现实情况下域不匹配的问题,并提供了多种实验配置的运行示例。大量实验结果表明ASV-Subtools显示出稳定性和可靠性,并在OLR Challenge 2020~2021?连续两届“东方语种识别竞赛”中做为赛事基线系统,同时也做为声纹识别竞赛CNSRC 2022的基线系统之一。 ASV-Subtools 声纹识别实战语音之家-AI工匠学堂推出《ASV-Subtools 声纹识别实战》课程,声纹识别受到越来越多的重视,应用于刑侦、人机交互声纹口令验证、银行声纹身份验证等领域,工业界岗位需求迫切。这门课程强调实战,结合开源工具,让学员在较短的时间内,快速掌握算法研究和产品开发的能力。 讲师力量课程目录课程必备入门基础shell脚本 Python语言 课程收获 全套课程服务
|
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/26 0:46:00- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |