IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> FCN: Fully Convolutional Networks for Semantic Segmentation -> 正文阅读

[人工智能]FCN: Fully Convolutional Networks for Semantic Segmentation

paper:?Fully Convolutional Networks for Semantic Segmentation

创新点

  1. 提出了全卷积的结构,即将分类网络最后的全连接层换成卷积层,从而可以处理任意大小的输入。

  2. 通过反卷积或插值的方法进行上采样,将输出还原回原始输入大小。

  3. 在分类网络上进行修改,将全连接层换成卷积层,可以共享前面层的权重,从而进行finetune。

  4. 提出skip结构,通过融合浅层特征和深层特征,兼顾了浅层的空间细节信息和深层的语义信息,使得最终的分割结果更加精细。

?

实现细节解析

这里以MMSegmentation中的实现为例,和原论文相比,backbone由Vgg-16换成了ResNet-50,skip结构换成了膨胀卷积,pytorch官方的实现也是这样的。

Backbone

  • 原始的ResNet-50中4个stage的strides=(1, 2, 2, 2),不采用膨胀卷积即dilations=(1, 1, 1, 1),而在FCN中4个stage的strides=(1, 2, 1, 1),dilations=(1, 1, 2, 4)。
  • 另外有一个contract_dilation=True的设置,即当空洞>1时,压缩第一个卷积层。这里在第三个和第四个stage的第一个bottleneck中将膨胀率减半,即第三个stage的第一个bottleneck中不采用膨胀卷积,第四个stage的第一个bottleneck中dilation=4/2=2。
  • 另外这里采用的是ResNetV1c,即stem中的7x7卷积替换成了3个3x3卷积。
  • 最后,注意一下padding,在原始实现中除了stem中7x7卷积的padding=3,其它所有padding=1。在FCN中因为用了膨胀卷积,后两个stage的stride=1,为了保持输入输出分辨率一直,由下式可得padding=dilation。

  • ?假设batch_size=4,模型输入shape=(4, 3, 480, 480),则backbone四个stage的输出分别为(4, 256, 120, 120)、(4, 512, 60, 60)、(4, 1024, 60, 60)、(4, 2048, 60, 60)。

FCN Head

  • 取ResNet第四个stage的输出(4, 2048, 60, 60),经过Conv2d(2048, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)、Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 两个conv-bn-relu得到 (4, 512, 60, 60)。
  • 上一步的输出(4, 512, 60, 60)与输入(4, 2048, 60, 60)拼接得到(4, 2560, 60, 60)。
  • 经过一个conv-bn-relu,Conv2d(2560, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False),得到(4, 512, 60, 60)。
  • 采用dropout,dropout_ratio=0.1。
  • 最后,经过Conv2d(512, num_classes, kernel_size=(1, 1), stride=(1, 1))得到模型的最终输出(4, num_classes, 60, 60),注意这里的类别数包括背景。

Loss

  • 上一步的输出(4, 2, 60, 60)经过双线性插值resize成输入大小,得到(4, 2, 480, 480)。
  • 采用CrossEntropy loss

Auxiliary Head

  • 取ResNet第三个stage的输出(4, 1024, 60, 60),经过Conv2d(1024, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)一个conv-bn-relu得到(4, 256, 60, 60)。
  • 采用dropout,dropout_ratio=0.1。
  • 经过Conv2d(256, num_classes, kernel_size=(1, 1), stride=(1, 1))得到模型的最终输出(4, num_classes, 60, 60)得到该分支的输出。?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-07-05 23:31:36  更:2022-07-05 23:31:58 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 1:44:37-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码