IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> paddle——ResNet源码解读 -> 正文阅读

[人工智能]paddle——ResNet源码解读

请添加图片描述

几个paddle组件

Conv2D

二维卷积层

https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/nn/Conv2D_cn.html

  • in_channels (int) - 输入图像的通道数。
  • out_channels (int) - 由卷积操作产生的输出的通道数。
  • kernel_size (int|list|tuple) - 卷积核大小。
  • stride (int|list|tuple,可选) - 步长大小。默认值:1。
  • padding (int|list|tuple|str,可选) - 填充大小。默认值:0。
  • dilation (int|list|tuple,可选) - 空洞大小。默认值:1。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MVW1RfH2-1656773613140)(F:\typora\images\image-20220702202001345.png)]

  • bias_attr (ParamAttr|bool,可选)- 指定偏置参数属性的对象。若 bias_attr 为bool类型,只支持为False,表示没有偏置参数。默认值为None,表示使用默认的偏置参数属性。

BatchNorm2D

批归一化层

num_features (int) - 指明输入 Tensor 的通道数量。

下采样

对于一幅图像I尺寸为MN,对其进行s倍下采样,即得到(M/s)(N/s)尺寸的得分辨率图像,当然s应该是M和N的公约数才行,如果考虑的是矩阵形式的图像,就是把原始图像s*s窗口内的图像变成一个像素,这个像素点的值就是窗口内所有像素的均值:

BasicBlock与BottleneckBlock

BasicBlock和Bottleneck的区别在于前者是用两个3x3的卷积组成的,后者是用两个1x1的卷积加一个3x3的卷积组成的。

bottleneck

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn

from paddle.utils.download import get_weights_path_from_url

__all__ = []

model_urls = {
    'resnet18': ('https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams',
                 'cf548f46534aa3560945be4b95cd11c4'),
    'resnet34': ('https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams',
                 '8d2275cf8706028345f78ac0e1d31969'),
    'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams',
                 'ca6f485ee1ab0492d38f323885b0ad80'),
    'resnet101': ('https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams',
                  '02f35f034ca3858e1e54d4036443c92d'),
    'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams',
                  '7ad16a2f1e7333859ff986138630fd7a'),
    'resnext50_32x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext50_32x4d.pdparams',
     'dc47483169be7d6f018fcbb7baf8775d'),
    "resnext50_64x4d":
    ('https://paddle-hapi.bj.bcebos.com/models/resnext50_64x4d.pdparams',
     '063d4b483e12b06388529450ad7576db'),
    'resnext101_32x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext101_32x4d.pdparams',
     '967b090039f9de2c8d06fe994fb9095f'),
    'resnext101_64x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext101_64x4d.pdparams',
     '98e04e7ca616a066699230d769d03008'),
    'resnext152_32x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext152_32x4d.pdparams',
     '18ff0beee21f2efc99c4b31786107121'),
    'resnext152_64x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext152_64x4d.pdparams',
     '77c4af00ca42c405fa7f841841959379'),
    'wide_resnet50_2':
    ('https://paddle-hapi.bj.bcebos.com/models/wide_resnet50_2.pdparams',
     '0282f804d73debdab289bd9fea3fa6dc'),
    'wide_resnet101_2':
    ('https://paddle-hapi.bj.bcebos.com/models/wide_resnet101_2.pdparams',
     'd4360a2d23657f059216f5d5a1a9ac93'),
}


class BasicBlock(nn.Layer):
    expansion = 1#不改变深度

    def __init__(self,
                 inplanes,
                 planes,#“基准通道数”,不是输出通道数
                 stride=1,
                 downsample=None,#下采样, 每隔n个间隔进行抽取,output.shape长宽变成1/2
                 groups=1,
                 base_width=64,
                 dilation=1,
                 norm_layer=None):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2D#批归一化

        if dilation > 1:
            raise NotImplementedError(
                "Dilation > 1 not supported in BasicBlock")

        self.conv1 = nn.Conv2D(inplanes,#输入通道数
                               planes,#输出通道数
                               3,#卷积核大小。
                               padding=1,
                               stride=stride,
                               bias_attr=False)#表示没有偏执参数
        self.bn1 = norm_layer(planes)#批归一化
        self.relu = nn.ReLU()#激活
        self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False)
        self.bn2 = norm_layer(planes)#批归一化
        self.downsample = downsample#是否进行下采样的判断
        self.stride = stride

    def forward(self, x):
        #将输出特征直接设置为的输入
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        #常规通过卷积获取输出特征

        if self.downsample is not None:
            identity = self.downsample(x)
        #最后的特征值=输入X+正常卷积获取的输出out
        out += identity
        #激活
        out = self.relu(out)

        return out

#输入channel(通道)从大变小, 再从小变大。
class BottleneckBlock(nn.Layer):

    expansion = 4#最后一次卷积将深度扩大4倍

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 groups=1,#将基准的通道数扩张groups倍
                 base_width=64,#基准的通道数默认为64
                 dilation=1,
                 norm_layer=None):
        super(BottleneckBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2D
        width = int(planes * (base_width / 64.)) * groups#将基准的通道数扩张groups倍

        self.conv1 = nn.Conv2D(inplanes, width, 1, bias_attr=False)#输入通道数inplanes, 输出通道数width,卷积核大小为1*1,
        self.bn1 = norm_layer(width)

        self.conv2 = nn.Conv2D(width,#输入通道数width
                               width,#输出通道数width
                               3,#卷积核大小3*3
                               padding=dilation,
                               stride=stride,
                               groups=groups,
                               dilation=dilation,
                               bias_attr=False)
        self.bn2 = norm_layer(width)

        self.conv3 = nn.Conv2D(width,
                               planes * self.expansion,#最后一次卷积将深度扩大4倍
                               1,#卷积核大小为1*1,
                               bias_attr=False)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU()
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Layer):
    """ResNet model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        Block (BasicBlock|BottleneckBlock): block module of model.
        depth (int, optional): layers of ResNet, Default: 50.
        width (int, optional): base width per convolution group for each convolution block, Default: 64.
        num_classes (int, optional): output dim of last fc layer. If num_classes <=0, last fc layer
                            will not be defined. Default: 1000.
        with_pool (bool, optional): use pool before the last fc layer or not. Default: True.
        groups (int, optional): number of groups for each convolution block, Default: 1.

    Returns:
        ResNet model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import ResNet
            from paddle.vision.models.resnet import BottleneckBlock, BasicBlock

            # build ResNet with 18 layers
            resnet18 = ResNet(BasicBlock, 18)

            # build ResNet with 50 layers
            resnet50 = ResNet(BottleneckBlock, 50)

            # build Wide ResNet model
            wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2)

            # build ResNeXt model
            resnext50_32x4d = ResNet(BottleneckBlock, 50, width=4, groups=32)

            x = paddle.rand([1, 3, 224, 224])
            out = resnet18(x)

            print(out.shape)
            # [1, 1000]

    """

    def __init__(self,
                 block,#使用的block,bottleneck或者basicblock
                 depth=50,#层数
                 width=64,#卷积核数量
                 num_classes=1000,#fc层的参数数量
                 with_pool=True,
                 groups=1):
        super(ResNet, self).__init__()
        layer_cfg = {
            18: [2, 2, 2, 2],#8*2+2 basicblock每个两层
            34: [3, 4, 6, 3],#16*2+2
            50: [3, 4, 6, 3],#16*3+2 bottleblock每个3层
            101: [3, 4, 23, 3],#33*3+2
            152: [3, 8, 36, 3]#50*3+2
        }
        layers = layer_cfg[depth]
        self.groups = groups
        self.base_width = width
        self.num_classes = num_classes
        self.with_pool = with_pool
        self._norm_layer = nn.BatchNorm2D

        self.inplanes = 64
        self.dilation = 1

        self.conv1 = nn.Conv2D(3,
                               self.inplanes,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias_attr=False)
        self.bn1 = self._norm_layer(self.inplanes)
        self.relu = nn.ReLU()
        self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        if with_pool:
            self.avgpool = nn.AdaptiveAvgPool2D((1, 1))

        if num_classes > 0:
            self.fc = nn.Linear(512 * block.expansion, num_classes)

#根据输入参数创建对应的层结构
    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2D(self.inplanes,
                          planes * block.expansion,
                          1,
                          stride=stride,
                          bias_attr=False),
                norm_layer(planes * block.expansion),
            )

        layers = []
        layers.append(
            block(self.inplanes, planes, stride, downsample, self.groups,
                  self.base_width, previous_dilation, norm_layer))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(self.inplanes,
                      planes,
                      groups=self.groups,
                      base_width=self.base_width,
                      norm_layer=norm_layer))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)#这里算一层
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        #这里算一层
        if self.with_pool:
            x = self.avgpool(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.fc(x)

        return x


def _resnet(arch, Block, depth, pretrained, **kwargs):
    model = ResNet(Block, depth, **kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])

        param = paddle.load(weight_path)
        model.set_dict(param)

    return model


def resnet18(pretrained=False, **kwargs):
    """ResNet 18-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNet 18-layer model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnet18

            # build model
            model = resnet18()

            # build model and load imagenet pretrained weight
            # model = resnet18(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    return _resnet('resnet18', BasicBlock, 18, pretrained, **kwargs)


def resnet34(pretrained=False, **kwargs):
    """ResNet 34-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNet 34-layer model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnet34

            # build model
            model = resnet34()

            # build model and load imagenet pretrained weight
            # model = resnet34(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    return _resnet('resnet34', BasicBlock, 34, pretrained, **kwargs)


def resnet50(pretrained=False, **kwargs):
    """ResNet 50-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNet 50-layer model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnet50

            # build model
            model = resnet50()

            # build model and load imagenet pretrained weight
            # model = resnet50(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs)


def resnet101(pretrained=False, **kwargs):
    """ResNet 101-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNet 101-layer. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnet101

            # build model
            model = resnet101()

            # build model and load imagenet pretrained weight
            # model = resnet101(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    return _resnet('resnet101', BottleneckBlock, 101, pretrained, **kwargs)


def resnet152(pretrained=False, **kwargs):
    """ResNet 152-layer model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNet 152-layer model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnet152

            # build model
            model = resnet152()

            # build model and load imagenet pretrained weight
            # model = resnet152(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    return _resnet('resnet152', BottleneckBlock, 152, pretrained, **kwargs)


def resnext50_32x4d(pretrained=False, **kwargs):
    """ResNeXt-50 32x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-50 32x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext50_32x4d

            # build model
            model = resnext50_32x4d()

            # build model and load imagenet pretrained weight
            # model = resnext50_32x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext50_32x4d', BottleneckBlock, 50, pretrained, **kwargs)


def resnext50_64x4d(pretrained=False, **kwargs):
    """ResNeXt-50 64x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-50 64x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext50_64x4d

            # build model
            model = resnext50_64x4d()

            # build model and load imagenet pretrained weight
            # model = resnext50_64x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext50_64x4d', BottleneckBlock, 50, pretrained, **kwargs)


def resnext101_32x4d(pretrained=False, **kwargs):
    """ResNeXt-101 32x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-101 32x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext101_32x4d

            # build model
            model = resnext101_32x4d()

            # build model and load imagenet pretrained weight
            # model = resnext101_32x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext101_32x4d', BottleneckBlock, 101, pretrained,
                   **kwargs)


def resnext101_64x4d(pretrained=False, **kwargs):
    """ResNeXt-101 64x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-101 64x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext101_64x4d

            # build model
            model = resnext101_64x4d()

            # build model and load imagenet pretrained weight
            # model = resnext101_64x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext101_64x4d', BottleneckBlock, 101, pretrained,
                   **kwargs)


def resnext152_32x4d(pretrained=False, **kwargs):
    """ResNeXt-152 32x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-152 32x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext152_32x4d

            # build model
            model = resnext152_32x4d()

            # build model and load imagenet pretrained weight
            # model = resnext152_32x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext152_32x4d', BottleneckBlock, 152, pretrained,
                   **kwargs)


def resnext152_64x4d(pretrained=False, **kwargs):
    """ResNeXt-152 64x4d model from
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
    
    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        ResNeXt-152 64x4d model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext152_64x4d

            # build model
            model = resnext152_64x4d()

            # build model and load imagenet pretrained weight
            # model = resnext152_64x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext152_64x4d', BottleneckBlock, 152, pretrained,
                   **kwargs)


def wide_resnet50_2(pretrained=False, **kwargs):
    """Wide ResNet-50-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.

    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        Wide ResNet-50-2 model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import wide_resnet50_2

            # build model
            model = wide_resnet50_2()

            # build model and load imagenet pretrained weight
            # model = wide_resnet50_2(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['width'] = 64 * 2
    return _resnet('wide_resnet50_2', BottleneckBlock, 50, pretrained, **kwargs)


def wide_resnet101_2(pretrained=False, **kwargs):
    """Wide ResNet-101-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.

    Args:
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.

    Returns:
        Wide ResNet-101-2 model. An instance of :ref:`api_fluid_dygraph_Layer`.

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import wide_resnet101_2

            # build model
            model = wide_resnet101_2()

            # build model and load imagenet pretrained weight
            # model = wide_resnet101_2(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['width'] = 64 * 2
    return _resnet('wide_resnet101_2', BottleneckBlock, 101, pretrained,
                   **kwargs)

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-07-05 23:31:36  更:2022-07-05 23:32:29 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/29 7:51:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计