IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 基于ResNet50实现宫颈细胞病变分类 -> 正文阅读

[人工智能]基于ResNet50实现宫颈细胞病变分类

数据集下载

2022“域见杯”医检人工智能开发者大赛竞赛数据集 (huaweicloud.com)

目标区域选择“华北-北京四”(baseline notebook需要在该区域运行),目标位置选择自己创建的OBS桶,确定后即可开始数据集下载。

使用Notebook

“域见杯”_Baseline_code (huaweicloud.com)

打开notebook后可能需要等待几十秒,然后左侧才会出现文件列表,然后再右键进行下载。

进入ModelArts的Notebook页面,然后创建属于自己的notebook在线环境,然后上传上一步下载的baseline notebook。

然后即可根据notebook里提供的详细教程,完成模型的训练开发。需将如下代码中"obs://***/kingmed_comp/DCCL_comp/" 修改成你自己的数据存储路径。

import moxing as mox
mox.file.copy_parallel('obs://***/kingmed_comp/DCCL_comp/', './data/')
mox.file.copy_parallel('obs://ma-competitions-bj4/kingmed_comp/code/model/', './model/')
import os
import time

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import torchvision
from torchvision import datasets, models, transforms

加载数据集,并将其分为训练集和测试集。

dataTrans = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
 
data_dir = './data'
train_data_dir = './data/train'
val_data_dir = './data/val'
train_dataset = datasets.ImageFolder(train_data_dir, dataTrans)
print(train_dataset.class_to_idx)
val_dataset = datasets.ImageFolder(val_data_dir, dataTrans)

image_datasets = {'train':train_dataset,'val':val_dataset}
    

    # wrap your data and label into Tensor

    
dataloders = {x: torch.utils.data.DataLoader(image_datasets[x],
                                             batch_size=64,
                                             shuffle=True,
                                             num_workers=4) for x in ['train', 'val']}

dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}

    # use gpu or not
use_gpu = torch.cuda.is_available()
def train_model(model, lossfunc, optimizer, scheduler, num_epochs=10):
    start_time = time.time()

    best_model_wts = model.state_dict()
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                scheduler.step()
                model.train(True)  # Set model to training mode
            else:
                model.train(False)  # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0.0

            # Iterate over data.
            for data in dataloders[phase]:
                # get the inputs
                inputs, labels = data
                

                # wrap them in Variable
                if use_gpu:
                    inputs = Variable(inputs.cuda())
                    labels = Variable(labels.cuda())
                else:
                    inputs, labels = Variable(inputs), Variable(labels)

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                outputs = model(inputs)
                _, preds = torch.max(outputs.data, 1)
                loss = lossfunc(outputs, labels)

                # backward + optimize only if in training phase
                if phase == 'train':
                    loss.backward()
                    optimizer.step()

                # statistics
                running_loss += loss.data
                running_corrects += torch.sum(preds == labels.data).to(torch.float32)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = model.state_dict()

    elapsed_time = time.time() - start_time
    print('Training complete in {:.0f}m {:.0f}s'.format(
        elapsed_time // 60, elapsed_time % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
  
    return model

模型训练

采用resnet50神经网络结构训练模型,模型训练需要一定时间,等待该段代码运行完成后再往下执行。

# get model and replace the original fc layer with your fc layer
model_ft = models.resnet50(pretrained=True, progress=False)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, len(train_dataset.classes))

if use_gpu:
    model_ft = model_ft.cuda()

    # define loss function
lossfunc = nn.CrossEntropyLoss()

params = list(model_ft.fc.parameters())
optimizer_ft = optim.SGD(params, lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

model_ft = train_model(model=model_ft,
                           lossfunc=lossfunc,
                           optimizer=optimizer_ft,
                           scheduler=exp_lr_scheduler,
                           num_epochs=50)

保存训练好的模型

torch.save(model_ft.state_dict(), './model/model.pth', _use_new_zipfile_serialization=False)

模型测试

from math import exp
import numpy as np

from PIL import Image
import cv2



infer_transformation = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])


IMAGES_KEY = 'images'
MODEL_INPUT_KEY = 'images'
LABEL_OUTPUT_KEY = 'predicted_label'
MODEL_OUTPUT_KEY = 'scores'
LABELS_FILE_NAME = 'labels.txt'


def decode_image(file_content):
    image = Image.open(file_content)
    image = image.convert('RGB')
    return image

 
def read_label_list(path):
    with open(path, 'r',encoding="utf8") as f:
        label_list = f.read().split(os.linesep)
    label_list = [x.strip() for x in label_list if x.strip()]
    return label_list


def resnet50(model_path):

    """Constructs a ResNet-50 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = models.resnet50(pretrained=False)
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 4)
    model.load_state_dict(torch.load(model_path,map_location ='cpu'))
    # model.load_state_dict(torch.load(model_path))

    model.eval()

    return model


def predict(file_name):
    LABEL_LIST = read_label_list('./model/labels.txt')
    model = resnet50('./model/model.pth')
    
    image1 = decode_image(file_name)
    

    input_img = infer_transformation(image1)

    input_img = torch.autograd.Variable(torch.unsqueeze(input_img, dim=0).float(), requires_grad=False)

    logits_list =  model(input_img)[0].detach().numpy().tolist()
    print(logits_list)
    maxlist=max(logits_list)
    print(maxlist)

    z_exp = [exp(i-maxlist) for i in  logits_list]

    sum_z_exp = sum(z_exp)
    softmax = [round(i / sum_z_exp, 3) for i in z_exp]
    print(softmax)
    labels_to_logits = {
        LABEL_LIST[i]: s for i, s in enumerate(softmax)
    }
    
    predict_result = {
        LABEL_OUTPUT_KEY: max(labels_to_logits, key=labels_to_logits.get),
        MODEL_OUTPUT_KEY: labels_to_logits
    }

    return predict_result

file_name = './data/test/ASC-US&LSIL/03424.jpg'
result = predict(file_name)  #可以替换其他图片
import matplotlib.pyplot as plt

plt.figure(figsize=(10,10)) #设置窗口大小
img = decode_image(file_name)
plt.imshow(img)
plt.show()

print(result)

将训练好的模型导入ModelArts

将模型导入ModelArts,为后续推理测试、模型提交做准备。

from modelarts.session import Session
from modelarts.model import Model
from modelarts.config.model_config import TransformerConfig,Params
!pip install json5
import json5
import re
import traceback
import random

try:
    session = Session()
    config_path = 'model/config.json' 
    if mox.file.exists(config_path): # 判断一下是否存在配置文件,如果没有则不能导入模型
        model_location =  './model'
        model_name = "kingmed_cc"
        load_dict = json5.loads(mox.file.read(config_path))
        model_type = load_dict['model_type']
        re_name = '_'+str(random.randint(0,1000))
        model_name += re_name
        print("正在导入模型,模型名称:", model_name)
        model_instance = Model(
                     session, 
                     model_name=model_name,               # 模型名称
                     model_version="1.0.0",               # 模型版本
                      source_location_type='LOCAL_SOURCE',
                     source_location=model_location,      # 模型文件路径
                     model_type=model_type,               # 模型类型
                     )

    print("所有模型导入完成")
except Exception as e:
    print("发生了一些问题,请看下面的报错信息:") 
    traceback.print_exc()
    print("模型导入失败")

使用ModelArts创建推理应用

进入ModelArts的AI应用管理界面,然后按照如下步骤将你的模型包创建为AI应用。

基于创建的AI应用部署为在线服务

进入在线服务部署界面,然后点击“部署”进行服务部署。

等待部署完成后,即可进行在线预测。

提交模型包进行判分

进入AI应用界面,找到你已经经过在线服务测试过的应用包,进行发布。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-07-17 16:23:46  更:2022-07-17 16:24:08 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/29 8:19:28-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计