IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> yolov5 opencv DNN 推理 -> 正文阅读

[人工智能]yolov5 opencv DNN 推理

一、环境

opencv4.5.1

Ubuntu 21.10

二、onnx转换

切换到yolov5工程中,打开终端运行指令

python export.py --weights yolov5s.pt --include onnx

onnx转onnx-sim

python -m onnxsim yolov5s.onnx yolov5s_sim.onnx

使用netron打开onnx文件

?最终的输出1*25200*85,将三个输出整合在一起即:

?25200=3*(20*20)+3*(40*40)+3*(80*80)个候选框

三、python版本推理

opecv DNN API:
1.读取模型
net = cv2.dnn.readNetFromONNX(model)
2.输入(类似Tensor)
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (640, 640), swapRB=True, crop=False)
????????swapRB:BGR->RGB
net.setInput(blob)
3.推理
preds = net.forward()
4.非极大值抑制
cv2.dnn.NMSBoxes(boxes,confidences,0.25,0.45)

import cv2
import numpy as np


classes=["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
        "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
        "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
        "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
        "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
        "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
        "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
        "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
        "hair drier", "toothbrush"]


def infer(img,pred,shape):
    w_ratio=img.shape[1]/shape[0]
    h_ratio=img.shape[0]/shape[1]
    # print(w_ratio,h_ratio)
    confidences=[]
    boxes=[]
    class_ids=[]
    boxes_num=pred.shape[1]
    data=pred[0]
    # print("data_shape:",data.shape)
    for i in range(boxes_num):
        da=data[i]#[box,conf,cls]
        confidence=da[4]
        if confidence>0.6:
            score=da[5:]*confidence
            _,_,_,max_score_index=cv2.minMaxLoc(score)#
            max_cls_id=max_score_index[1]
            if score[max_cls_id]>0.25:
                confidences.append(confidence)
                class_ids.append(max_cls_id)
                x,y,w,h=da[0].item(),da[1].item(),da[2].item(),da[3].item()
                nx=int((x-w/2.0)*w_ratio)
                ny=int((y-h/2.0)*h_ratio)
                nw=int(w*w_ratio)
                nh=int(h*h_ratio)
                boxes.append(np.array([nx,ny,nw,nh]))

    indexes=cv2.dnn.NMSBoxes(boxes,confidences,0.25,0.45)
    res_ids=[]
    res_confs=[]
    res_boxes=[]
    for i in indexes:
        res_ids.append(class_ids[i])
        res_confs.append(confidences[i])
        res_boxes.append(boxes[i])

    # print(res_ids)
    # print(res_confs)
    # print(res_boxes)
    return res_ids,res_confs,res_boxes

def draw_rect(img,ids,confs,boxes):
    for i in range(len(ids)):
        cv2.rectangle(img, boxes[i], (0,0,255), 2)
        cv2.rectangle(img, (boxes[i][0],boxes[i][1]-20),(boxes[i][0]+boxes[i][2],boxes[i][1]), (200, 200, 200), -1)
        cv2.putText(img, classes[ids[i]], (boxes[i][0], boxes[i][1] - 10), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 0, 0))
        cv2.putText(img, str(confs[i]), (boxes[i][0]+60, boxes[i][1] - 10), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 0, 0))

    cv2.imwrite("res.jpg",img)
    cv2.imshow('img',img)
    cv2.waitKey()


if __name__=="__main__":
    import time
    st=time.time()
    shape=(640,640)
    src=cv2.imread("../data/bus.jpg")
    img=src.copy()
    net=cv2.dnn.readNet("../model_m1/yolov5s_sim.onnx")
    blob=cv2.dnn.blobFromImage(img,1/255.,shape,swapRB=True,crop=False)
    net.setInput(blob)
    pred=net.forward()
    print(pred.shape)
    ids,confs,boxes=infer(img,pred,shape)
    et=time.time()
    print("run time:{:.2f}s/{:.2f}FPS".format(et-st,1/(et-st)))
    draw_rect(src,ids,confs,boxes)

运行结果:

四、C++ 版本推理

cdnn.cpp

#include<iostream>
#include<opencv2/imgproc.hpp>
#include<opencv2/opencv.hpp>


void infer_res(cv::Mat& img,cv::Mat& preds,std::vector<cv::Rect> &boxes,std::vector<float>&confidences,std::vector<int> &classIds,std::vector<int>&indexs)
{
    float w_ratio=img.cols/640.0;
    float h_ratio=img.rows/640.0;

    cv::Mat data(preds.size[1],preds.size[2],CV_32F,preds.ptr<float>());
    for(int i=0;i<data.rows;i++)
    {
        float conf=data.at<float>(i,4);
        if(conf<0.45)
        {
            continue;
        }

        cv::Mat clsP=data.row(i).colRange(5,85)*conf;
        cv::Point IndexId;
        double score;
        minMaxLoc(clsP,0,&score,0,&IndexId);
        if(score>0.25)
        {
            float x=data.at<float>(i,0);
            float y=data.at<float>(i,1);
            float w=data.at<float>(i,2);
            float h=data.at<float>(i,3);

            int nx=int((x-w/2.0)*w_ratio);
            int ny=int((y-h/2.0)*h_ratio);
            int nw=int(w*w_ratio);
            int nh=int(h*h_ratio);

            cv::Rect box;
            box.x=nx;
            box.y=ny;
            box.width=nw;
            box.height=nh;
            boxes.push_back(box);
            classIds.push_back(IndexId.x);
            confidences.push_back(score);

        }

    }

//    std::vector<int>indexs;
    cv::dnn::NMSBoxes(boxes,confidences,0.25,0.45,indexs);

}
//void draw_label(cv::Mat& img,std::vector<cv::Rect> &boxes,std::vector<float>&confidences,std::vector<int> &classIds,std::vector<int>&indexs,std::string& classes[])
//{
//    for(int i=0;i<boxes.size();i++)
//    {
//        cv::rectangle(img,boxes[i],(0,0,0),1);
//
//    }
//    cv::imshow("img",img);
//    cv::waitKey();
//
//}


int main()
{
    clock_t st=clock();
    cv::Mat src=cv::imread("../../data/bus.jpg");

    std::string classNames[]={ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
        "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
        "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
        "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
        "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
        "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
        "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
        "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
        "hair drier", "toothbrush"};

    cv::Mat img=src.clone();
    cv::dnn::Net net=cv::dnn::readNet("../../model_m1/yolov5s_sim.onnx");
    cv::Mat blob=cv::dnn::blobFromImage(img,1/255.0,cv::Size(640,640), cv::Scalar(0, 0, 0), true, false);
    net.setInput(blob);
    cv::Mat preds=net.forward();
    std::vector<cv::Rect>boxes;
    std::vector<float>confidences;
    std::vector<int> classIds;
    std::vector<int>indexs;
    infer_res(src,preds,boxes,confidences,classIds,indexs);
    clock_t et=clock();
    std::cout<<"run time:"<<(double)(et-st)/CLOCKS_PER_SEC<<std::endl;
//    draw_label(img,boxes,confidences,classIds,indexs,&classNames);
    for(int i=0;i<indexs.size();i++)
    {
        cv::rectangle(src,boxes[indexs[i]],(0,0,255),2);
        cv::rectangle(src,cv::Point(boxes[indexs[i]].tl().x,boxes[indexs[i]].tl().y-20),
        cv::Point(boxes[indexs[i]].tl().x+boxes[indexs[i]].br().x,boxes[indexs[i]].tl().y),cv::Scalar(200,200,200),-1);
        cv::putText(src,classNames[classIds[indexs[i]]], cv::Point(boxes[indexs[i]].tl().x+5, boxes[indexs[i]].tl().y - 10), cv::FONT_HERSHEY_SIMPLEX, .5, cv::Scalar(0, 0, 0));
        std::ostringstream conf;
        conf<<confidences[indexs[i]];
        cv::putText(src,conf.str(), cv::Point(boxes[indexs[i]].tl().x+60, boxes[indexs[i]].tl().y - 10), cv::FONT_HERSHEY_SIMPLEX, .5, cv::Scalar(0, 0, 0));

    }
    cv::imwrite("res_.jpg",src);
    cv::imshow("img",src);
    cv::waitKey();


    return 0;
}

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(cdnn)
find_package(OpenCV 4.5.1 REQUIRED)
include_directories(${OpenCV_INCLUDES_DIRS})
add_executable(cdnn cdnn.cpp)
target_link_libraries(cdnn ${OpenCV_LIBS})

执行:

mkdir build
cd build
cmake ..
make
./cdnn

运行结果:

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-07-17 16:23:46  更:2022-07-17 16:24:24 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/29 8:17:28-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计