IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【计算机知识学习】OpenCV——图像特征以及匹配算法 -> 正文阅读

[人工智能]【计算机知识学习】OpenCV——图像特征以及匹配算法

目录

角点特征

1 图像的特征

Harris和Shi-Tomas算法

1 Harris角点检测

1.1 原理

1.2 实现

2 Shi-Tomasi角点检测

2.1 原理

?SIFT/SURF算法

1.1 SIFT原理

1.1.1 基本流程

1.1.2 尺度空间极值检测

1.3 实现

1.实例化sift

2.利用sift.detectAndCompute()检测关键点并计算

3.将关键点检测结果绘制在图像上


surf因为专利问题,?一个下午纠结的恶心。

上午的转换类型的代码知道了,课件给的代码可以实现了? astype(int)

角点特征

1 图像的特征

大多数人都玩过拼图游戏。首先拿到完整图像的碎片,然后把这些碎片以正确的方式排列起来从而重建这幅图像。如果把拼图游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了。

在拼图时,我们要寻找一些唯一的特征,这些特征要适于被跟踪,容易被比较。我们在一副图像中搜索这样的特征,找到它们,而且也能在其他图像中找到这些特征,然后再把它们拼接到一起。我们的这些能力都是天生的。

那这些特征是什么呢?我们希望这些特征也能被计算机理解。

如果我们深入的观察一些图像并搜索不同的区域

蓝色框中的区域是一个平面很难被找到和跟踪。无论向哪个方向移动蓝色框,都是一样的。对于黑色框中的区域,它是一个边缘。如果沿垂直方向移动,它会改变。但是如果沿水平方向移动就不会改变。而红色框中的角点,无论你向那个方向移动,得到的结果都不同,这说明它是唯一的。 所以,我们说角点是一个好的图像特征,也就回答了前面的问题。

角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。角点在三维场景重建运动估计,目标跟踪、目标识别、图像配准与匹配等计算机视觉领域起着非常重要的作用。在现实世界中,角点对应于物体的拐角,道路的十字路口、丁字路口等

那我们怎样找到这些角点呢?接下来我们使用 OpenCV 中的各种算法来查找图像的特征,并对它们进行描述。

HarrisShi-Tomas算法

1 Harris角点检测

1.1 原理

Harris角点检测的思想是通过图像的局部的小窗口观察图像,角点的特征是窗口沿任意方向移动都会导致图像灰度的明显变化

当R为大数值的正数时是角点

当R为大数值的负数时是边界

当R为小数是认为是平坦区域

1.2 实现

OpenCV中实现Hariis检测使用的API是:

dst=cv.cornerHarris(src, blockSize, ksize, k)

参数:

  • img:数据类型为 ?oat32 的输入图像。
  • blockSize:角点检测中要考虑的邻域大小。
  • ksizesobel求导使用的核大小
  • k :角点检测方程中的自由参数,取值参数为 [0.040.06].

示例:

import cv2 as cv
import numpy as np 
import matplotlib.pyplot as plt
# 1 读取图像,并转换成灰度图像
img = cv.imread('./image/chessboard.jpg')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# 2 角点检测
# 2.1 输入图像必须是 float32
gray = np.float32(gray)

# 2.2 最后一个参数在 0.04 到 0.05 之间
dst = cv.cornerHarris(gray,2,3,0.04)
# 3 设置阈值,将角点绘制出来,阈值根据图像进行选择
img[dst>0.001*dst.max()] = [0,0,255]
# 4 图像显示
plt.figure(figsize=(10,8),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title('Harris角点检测')
plt.xticks([]), plt.yticks([])
plt.show()

?Harris角点检测的优缺点:

优点:

  • 旋转不变性,椭圆转过一定角度但是其形状保持不变(特征值保持不变)
  • 对于图像灰度的仿射变化具有部分的不变性,由于仅仅使用了图像的一介导数,对于图像灰度平移变化不变;对于图像灰度尺度变化不变

缺点:

  • 对尺度很敏感,不具备几何尺度不变性。
  • 提取的角点是像素级的

2 Shi-Tomasi角点检测

2.1 原理

Shi-Tomasi算法是对Harris角点检测算法的改进,一般会比Harris算法得到更好的角点。Harris 算法的角点响应函数是将矩阵 M 的行列式值与 M 的迹相减,利用差值判断是否为角点。后来Shi 和Tomasi 提出改进的方法是,若矩阵M的两个特征值中较小的一个大于阈值,则认为他是角点,即:

OpenCV中实现Shi-Tomasi角点检测使用API:

corners = cv2.goodFeaturesToTrack ( image, maxcorners, qualityLevel, minDistance )

参数:

  • Image: 输入灰度图像
  • maxCorners : 获取角点数的数目。
  • qualityLevel:该参数指出最低可接受的角点质量水平,在0-1之间。
  • minDistance:角点之间最小的欧式距离,避免得到相邻特征点。

返回:

  • Corners: 搜索到的角点,在这里所有低于质量水平的角点被排除掉,然后把合格的角点按质量排序,然后将质量较好的角点附近(小于最小欧式距离)的角点删掉,最后找到maxCorners个角点返回。

示例:

import numpy as np 
import cv2 as cv
import matplotlib.pyplot as plt
# 1 读取图像
img = cv.imread('./image/tv.jpg') 
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 2 角点检测
corners = cv.goodFeaturesToTrack(gray,1000,0.01,10)  
# 3 绘制角点
for i in corners:
    x,y = i.ravel()
    cv.circle(img,(x,y),2,(0,0,255),-1)
# 4 图像展示
plt.figure(figsize=(10,8),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title('shi-tomasi角点检测')
plt.xticks([]), plt.yticks([])
plt.show()

?SIFT/SURF算法

1.1 SIFT原理

前面两节我们介绍了HarrisShi-Tomasi角点检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角点,但是图像被放大后,在使用同样的窗口,就检测不到角点了。

所以,下面我们来介绍一种计算机视觉的算法,尺度不变特征转换即SIFT (Scale-invariant feature transform)。它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe1999年所发表,2004年完善总结。应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对等领域。

SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向。SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。

1.1.1 基本流程

LoweSIFT算法分解为如下四步

  1. 尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯差分函数来识别潜在的对于尺度和旋转不变的关键点。
  2. 关键点定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点的选择依据于它们的稳定程度。
  3. 关键点方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而保证了对于这些变换的不变性。
  4. 关键点描述:在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。这些梯度作为关键点的描述符,它允许比较大的局部形状的变形或光照变化。

我们就沿着Lowe的步骤,对SIFT算法的实现过程进行介绍:

1.1.2 尺度空间极值检测

在不同的尺度空间是不能使用相同的窗口检测极值点,对小的关键点使用小的窗口,对大的关键点使用大的窗口,为了达到上述目的,我们使用尺度空间滤波器。

高斯核是唯一可以产生多尺度空间的核函数。-Scale-space theory: A basic tool for analysing structures at different scales》。

1.2 SURF原理

使用 SIFT 算法进行关键点检测和描述的执行速度比较慢, 需要速度更快的算法。 2006 Bay提出了 SURF 算法,是SIFT算法的增强版,它的计算量小,运算速度快,提取的特征与SIFT几乎相同,将其与SIFT算法对比如下:

1.3 实现

OpenCV中利用SIFT检测关键点的流程如下所示:

1.实例化sift

sift = cv.xfeatures2d.SIFT_create()

2.利用sift.detectAndCompute()检测关键点并计算

kp,des = sift.detectAndCompute(gray,None)

参数:

  • gray: 进行关键点检测的图像,注意是灰度图像

返回:

  • kp: 关键点信息,包括位置,尺度,方向信息
  • des: 关键点描述符,每个关键点对应128个梯度信息的特征向量

3.将关键点检测结果绘制在图像上

cv.drawKeypoints(image, keypoints, outputimage, color, flags)

参数:

  • image: 原始图像
  • keypoints:关键点信息,将其绘制在图像上
  • outputimage:输出图片,可以是原始图像
  • color:颜色设置,通过修改(b,g,r)的值,更改画笔的颜色,b=蓝色,g=绿色,r=红色。
  • flags:绘图功能的标识设置
    1. cv2.DRAW_MATCHES_FLAGS_DEFAULT:创建输出图像矩阵,使用现存的输出图像绘制匹配对和特征点,对每一个关键点只绘制中间点
    2. cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG:不创建输出图像矩阵,而是在输出图像上绘制匹配对
    3. cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS:对每一个特征点绘制带大小和方向的关键点图形
    4. cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS:单点的特征点不被绘制

SURF算法的应用与上述流程是一致,这里就不在赘述。

示例:

利用SIFT算法在中央电视台的图片上检测关键点,并将其绘制出来:

import cv2 as cv 
import numpy as np
import matplotlib.pyplot as plt
# 1 读取图像
img = cv.imread('./image/tv.jpg')
gray= cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 2 sift关键点检测
# 2.1 实例化sift对象
sift = cv.xfeatures2d.SIFT_create()      # 课程开头提到的问题 

# 2.2 关键点检测:kp关键点信息包括方向,尺度,位置信息,des是关键点的描述符
kp,des=sift.detectAndCompute(gray,None)
# 2.3 在图像上绘制关键点的检测结果
cv.drawKeypoints(img,kp,img,flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# 3 图像显示
plt.figure(figsize=(8,6),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title('sift检测')
plt.xticks([]), plt.yticks([])
plt.show()

关于sift算法专利无法使用的问题

一、降低版本

https://blog.csdn.net/weixin_43772533/article/details/103242845

二、20年过期后

https://blog.csdn.net/pursuing2019/article/details/119523025

去年3月以后SIFT专利就已经到期了,OpenCV官方也把它挪出非免费模块了!我查了一下版本,从OpenCV3.4.10和OpenCV4.3后,就已经可以免费使用了!

另外需要注意的是,上面一句适用于OpenCV3.4.10,如果是OpenCV4.3,需要改为:

sift = cv2.SIFT_create()

没有用这个,就是安装了 pip install opencv -contrib-python 之后 按照课件代码就运行出来了

Surf弄一下午 编译那些都是vs的,我也看不懂,解决不了

pip install --user opencv-contrib-python==3.4.2.17

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-07-17 16:23:46  更:2022-07-17 16:26:59 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 5:04:01-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码