IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Swin-Transformer多分类改造 -> 正文阅读

[人工智能]Swin-Transformer多分类改造

一、目标

microsoft的swin-transformer本身是进行单分类任务的,我们希望通过swin-transformer实现多分类的功能。

比如我们有分类任务:

(1)车辆类型type的分类,分car(轿车)和jeep(吉普车)两类

(2)车辆朝向direction的分类,分forward(朝前)和backward(朝后)两类

图片大致如下:

?

?训练/验证数据目录结构如下:

?二、改动内容

1、创建contants.py文件

该文件记录算法会用到的几个全局变量

# 目标名称到id的映射
target_type_dict = {'car': 0, 'jeep': 1}
target_direction_dict = {'forward': 0, 'backward': 1}

# 目标每类中的种数
target_dim_dict = {'type': 2, 'direction': 2}

?

2、创建swin_dataloader.py文件

该文件用于训练时批量加载数据

import os
from torch.utils.data import DataLoader, Dataset, Sampler
from torchvision import datasets, transforms
from timm.data.transforms import str_to_pil_interp
from PIL import Image
import constants

class TrainDataset(Dataset):
    def __init__(self, config):
        train_data_path = os.path.join(config.DATA.DATA_PATH, 'train')
        train_data_desc = os.path.join(train_data_path, 'train_desc.txt')

        self.img_paths = []
        self.types = []
        self.directions = []
        with open(train_data_desc, 'r') as f:
            for line in f:
                arr = line.split(",")
                img_path, type, direction = arr[0], arr[1], arr[2].replace('\n', '')
                self.img_paths.append(os.path.join(train_data_path, img_path))
                self.types.append(int(constants.target_type_dict.get(type)))
                self.directions.append(int(constants.target_direction_dict.get(direction)))

        # transform
        t = []
        size = int((256 / 224) * config.DATA.IMG_SIZE)
        t.append(transforms.Resize(size, interpolation=str_to_pil_interp(config.DATA.INTERPOLATION)))
        t.append(transforms.CenterCrop(config.DATA.IMG_SIZE))
        t.append(transforms.ToTensor())
        t.append(transforms.Normalize(constants.IMG_DEFAULT_MEAN, constants.IMG_DEFAULT_STD))
        self.transform = transforms.Compose(t)

    def __len__(self):
        return len(self.img_paths)

    def __getitem__(self, index):
        img_path = self.img_paths[index]
        type = self.types[index]
        direction = self.directions[index]

        img = Image.open(img_path).convert('RGB')
        img_tensor = self.transform(img)

        return img_tensor, type, direction

class TestDataset(Dataset):

    def __init__(self, config):
        test_data_path = os.path.join(config.DATA.DATA_PATH, 'val')
        test_data_desc = os.path.join(test_data_path, 'val_desc.txt')

        self.img_paths = []
        self.types = []
        self.directions = []
        with open(test_data_desc, 'r') as f:
            for line in f:
                arr = line.split(",")
                img_path, type, direction = arr[0], arr[1], arr[2].replace('\n', '')
                self.img_paths.append(os.path.join(test_data_path, img_path))
                self.types.append(int(constants.target_type_dict.get(type)))
                self.directions.append(int(constants.target_direction_dict.get(direction)))

        # transform
        t = []
        size = int((256 / 224) * config.DATA.IMG_SIZE)
        t.append(transforms.Resize(size, interpolation=str_to_pil_interp(config.DATA.INTERPOLATION)))
        t.append(transforms.CenterCrop(config.DATA.IMG_SIZE))
        t.append(transforms.ToTensor())
        t.append(transforms.Normalize(constants.IMG_DEFAULT_MEAN, constants.IMG_DEFAULT_STD))
        self.transform = transforms.Compose(t)

    def __len__(self):
        return len(self.img_paths)

    def __getitem__(self, index):
        img_path = self.img_paths[index]
        type = self.types[index]
        direction = self.directions[index]

        img = Image.open(img_path).convert('RGB')
        img_tensor = self.transform(img)

        return img_tensor, type, direction

3、修改swin_transformer文件

(1)在SwinTransformer的__init__()初始化函数中做如下修改:

self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
# self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

for idx, (k, v) in enumerate(constants.target_dim_dict.items()):
	fc = nn.Linear(self.num_features, v)
	setattr(self, f'fc_{k}', fc)

(2)在SwinTransformer的forward()函数中做如下修改:

def forward(self, x):
	x = self.forward_features(x)
	# x = self.head(x)
	# return x

	outputs = {}
	for k,v in constants.target_dim_dict.items():
		out = getattr(self, f'fc_{k}')(x)
		outputs[k] = out

	return outputs

4、修改main.py文件

对于模型输出后结果的解析做相应的调整,调整比较生硬,如果dataloader中把输出的type和direction放到一个对象里面,可能会稍微优雅一点。

def train_one_epoch(config, model, criterion, data_loader, optimizer, epoch, mixup_fn, lr_scheduler, loss_scaler):
    model.train()
    optimizer.zero_grad()

    num_steps = len(data_loader)
    batch_time = AverageMeter()
    loss_meter = AverageMeter()
    norm_meter = AverageMeter()
    scaler_meter = AverageMeter()

    start = time.time()
    end = time.time()
    for idx, (samples, type, direction) in enumerate(data_loader):
        samples = samples.cuda(non_blocking=True)
        type = type.cuda(non_blocking=True)
        direction = direction.cuda(non_blocking=True)

        # todo mix this bug
        # if mixup_fn is not None:
        #     samples, person, country = mixup_fn(samples, person, country)

        criterion = torch.nn.CrossEntropyLoss()
        # with torch.cuda.amp.autocast(enabled=config.AMP_ENABLE):
        outputs = model(samples)
        loss = 0
        loss += criterion(outputs['type'], type)
        loss += criterion(outputs['direction'], direction)
        loss = loss / config.TRAIN.ACCUMULATION_STEPS

        # this attribute is added by timm on one optimizer (adahessian)
        is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
        grad_norm = loss_scaler(loss, optimizer, clip_grad=config.TRAIN.CLIP_GRAD,
                                parameters=model.parameters(), create_graph=is_second_order,
                                update_grad=(idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0)
        if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
            optimizer.zero_grad()
            lr_scheduler.step_update((epoch * num_steps + idx) // config.TRAIN.ACCUMULATION_STEPS)
        loss_scale_value = loss_scaler.state_dict()["scale"]

        torch.cuda.synchronize()

        loss_meter.update(loss.item(), type.size(0))
        if grad_norm is not None:  # loss_scaler return None if not update
            norm_meter.update(grad_norm)
        scaler_meter.update(loss_scale_value)
        batch_time.update(time.time() - end)
        end = time.time()

        if idx % config.PRINT_FREQ == 0:
            lr = optimizer.param_groups[0]['lr']
            wd = optimizer.param_groups[0]['weight_decay']
            memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
            etas = batch_time.avg * (num_steps - idx)
            logger.info(
                f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
                f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t wd {wd:.4f}\t'
                f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
                f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
                f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
                f'loss_scale {scaler_meter.val:.4f} ({scaler_meter.avg:.4f})\t'
                f'mem {memory_used:.0f}MB')
    epoch_time = time.time() - start
    logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}")


@torch.no_grad()
def validate(config, data_loader, model):
    criterion = torch.nn.CrossEntropyLoss()
    model.eval()

    batch_time = AverageMeter()
    loss_meter = AverageMeter()
    type_acc1_meter = AverageMeter()
    direction_acc1_meter = AverageMeter()

    end = time.time()
    for idx, (images, type, direction) in enumerate(data_loader):
        images = images.cuda(non_blocking=True)
        type = type.cuda(non_blocking=True)
        direction = direction.cuda(non_blocking=True)

        # compute output
        # with torch.cuda.amp.autocast(enabled=config.AMP_ENABLE):
        #     output = model(images)
        outputs = model(images)
        loss = 0
        loss += criterion(outputs['type'], type)
        loss += criterion(outputs['direction'], direction)
        loss = loss / config.TRAIN.ACCUMULATION_STEPS

        # measure accuracy and record loss
        type_acc1 = accuracy(outputs['type'], type)
        direction_acc1 = accuracy(outputs['direction'], direction)

        type_acc1 = torch.tensor(type_acc1)
        direction_acc1 = torch.tensor(direction_acc1)
        loss = torch.tensor(loss)

        loss_meter.update(loss.item(), type.size(0))
        type_acc1_meter.update(type_acc1.item(), type.size(0))
        direction_acc1_meter.update(direction_acc1.item(), type.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if idx % config.PRINT_FREQ == 0:
            memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
            logger.info(
                f'Test: [{idx}/{len(data_loader)}]\t'
                f'Time {batch_time.val:.3f}\t'
                f'Loss {loss_meter.val:.4f}\t'
                f'type_Acc@1 {type_acc1_meter.val:.3f}\t'
                f'direction_Acc@1 {direction_acc1_meter.val:.3f}\t'
                f'Mem {memory_used:.0f}MB')
    logger.info(f' * type_Acc@1 {type_acc1_meter.avg:.3f} * direction_Acc@1 {direction_acc1_meter.avg:.3f}')
    return type_acc1_meter.avg, direction_acc1_meter.avg, loss_meter.avg

三、效果

经过117轮迭代后,type + direction的准确率可以达到167.5%,总分为100+100=200%。其中type的准确率为77.5%,direction的准确率为90%。

train的loss为0.0023,基本上训练集拟合的较为完善了。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-07-17 16:23:46  更:2022-07-17 16:27:07 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/16 16:37:04-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码