IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Two-Stream Convolutional Networks for Action Recognition in Videos双流网络论文精读 -> 正文阅读

[人工智能]Two-Stream Convolutional Networks for Action Recognition in Videos双流网络论文精读

Two-Stream Convolutional Networks for Action Recognition in Videos双流网络论文精读

论文:Two-Stream Convolutional Networks for Action Recognition in Videos
链接:https://arxiv.org/abs/1406.2199

本文是深度学习应用在视频分类领域的开山之作,双流网络的意思就是使用了两个卷积神经网络,一个是Spatial stream ConvNet,一个是Temporal stream ConvNet。此前的研究者在将卷积神经网络直接应用在视频分类中时,效果并不好。作者认为可能是因为卷积神经网络只能提取局部特征,于是作者使用了视频的光流信息,先提取了一遍视频光流特征,再将其送入卷积神经网络中,这样就取得了不错的效果。

双流卷积神经网络的示意图如下,其中上半部分的空间流卷积神经网络输入是静态的单帧图像,该网络输出动作的分类概率;下半部分的事件流卷积神经网络输入的是optical flow,即视频中的光流信息,最后也是通过softmax输出分类概率,最后这两个分类概率取加权平均值,就能得到最终的预测。

OpenCv提取光流的代码在这里:OpenCV: Optical Flow

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dWcTVVnW-1657977598402)(C:\Users\86133\AppData\Roaming\Typora\typora-user-images\image-20220716182601911.png)]

那么什么是视频中的光流信息呢,作者给出了如下解释。如下图(a)(b)所示,图中人物在抽出弓箭,图?就是相邻两帧的光流信息,图中的箭头就是人物手臂的运动方向,也就是视频的运动特征。因为光流有x,y两个方向,其中图(d)就表示这个视频x方向的光流特征,图(e)表示视频y方向的光流特征。假设图片长度为320,宽度为240,那么输入的相邻两帧视频维度即为(320,240,3),图?中光流图的维度即为(320,240,2)2代表xy两个方向,最后图(d)(e)的维度就是(320,240,1)。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tgZ4HLvK-1657977598404)(C:\Users\86133\AppData\Roaming\Typora\typora-user-images\image-20220716184303131.png)]

为了得到整个视频的光流特征,作者认为不能直接把视频的光流图像输入2D卷积神经网络,因为这样还是不能得到视频之间的连续信息。作者想出了以下两种方法得到输入的光流信息,分别是optical flow stacking和trajectory stacking,如下图所示。

optical flow stacking的计算公式如下,
I τ ( u , v , 2 k ? 1 ) = d τ + k ? 1 x ( u , v ) I τ ( u , v , 2 k ) = d τ + k ? 1 y ( u , v ) , u = [ 1 ; w ] , v = [ 1 ; h ] , k = [ 1 ; L ] . \begin{aligned} &I_{\tau}(u, v, 2 k-1)=d_{\tau+k-1}^{x}(u, v) \\ &I_{\tau}(u, v, 2 k)=d_{\tau+k-1}^{y}(u, v), \quad u=[1 ; w], v=[1 ; h], k=[1 ; L] . \end{aligned} ?Iτ?(u,v,2k?1)=dτ+k?1x?(u,v)Iτ?(u,v,2k)=dτ+k?1y?(u,v),u=[1;w],v=[1;h],k=[1;L].?
trajectory stacking的计算公式如下:
I τ ( u , v , 2 k ? 1 ) = d τ + k ? 1 x ( p k ) I τ ( u , v , 2 k ) = d τ + k ? 1 y ( p k ) , u = [ 1 ; w ] , v = [ 1 ; h ] , k = [ 1 ; L ] . \begin{aligned} &I_{\tau}(u, v, 2 k-1)=d_{\tau+k-1}^{x}\left(\mathbf{p}_{k}\right) \\ &I_{\tau}(u, v, 2 k)=d_{\tau+k-1}^{y}\left(\mathbf{p}_{k}\right), \quad u=[1 ; w], v=[1 ; h], k=[1 ; L] . \end{aligned} ?Iτ?(u,v,2k?1)=dτ+k?1x?(pk?)Iτ?(u,v,2k)=dτ+k?1y?(pk?),u=[1;w],v=[1;h],k=[1;L].?
其中 p k \mathbf{p}_{k} pk? 是轨迹上的第 k k k个点, 从第 τ \tau τ帧的位置 ( u , v ) (u, v) (u,v)开始,且由以下递归关系定义:

p 1 = ( u , v ) ; p k = p k ? 1 + d τ + k ? 2 ( p k ? 1 ) , k > 1. \mathbf{p}_{1}=(u, v) ; \quad \mathbf{p}_{k}=\mathbf{p}_{k-1}+\mathbf{d}_{\tau+k-2}\left(\mathbf{p}_{k-1}\right), k>1 . p1?=(u,v);pk?=pk?1?+dτ+k?2?(pk?1?),k>1.
其中,这里的每一帧已经被resize为(224,224)的大小。左边表示视频的每一帧都在相同位置取出光流信息,即每次都在P1的位置上取光流的值,右边这种方式表示沿着光流运动的轨迹来取光流的值,即在第T+1帧时第T帧在P1的点运动到了P2,那么就继续从P2的位置开始取光流信息。最终作者发现左边的方式效果更好一些。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kohksSLm-1657977598405)(C:\Users\86133\AppData\Roaming\Typora\typora-user-images\image-20220716190640020.png)]

那么光流怎么作为网络输入呢?假设给定L+1帧的一个视频,可以得到L个光流图,这L个光流图可以作为(w,h,2L)这么大的一个张量输入网络。因为每个光流图都有L个x方向的光流和L个y方向的光流,所以2L这个channel的叠加方式就是(x1,x2…,xL,y1,y2,…yL)。再看回图1,作者设计的训练网络中Spatial stream ConNet部分有RGB三个channel,然后作者每个视频从中抽样出11帧图片,可以获得10个光流图,因此Temporal stream ConvNet部分有20个channel。

那么最后的结果是怎么通过双流网络获得的呢?对于空间流卷积网络,作者从每个视频中等间隔抽取25帧图片,然后抽取这个图片的四个边角和中心框,再将图像翻转,重复上述操作。这样一张照片就被增强为了10张照片。由于每个视频从中抽取了25帧,增强过后一个视频就变成了250帧,这250张照片分别输入空间流卷积网络,得到动作是每个类别的概率。最后这250个概率值取平均,就可得到这个视频属于每个类别的总概率。对于时间流卷积网络,作者在上述25帧之后都取了连续的11帧,然后将张量送入卷积网络,再取平均,得到每个类别的平均概率。最后将这两个流的结果做一个late fusion,即结果相加再除以2,得到最终的双流网络预测结果。

我从github上看到一份pytorch复现代码,但是目前还没有尝试运行,链接如下:blacknwhite5/pytorch-two-stream-CNN: Two-Stream Convolutional Networks for Action Recognition in Videos (github.com)

pytorch网络实现细节:

class SpatialNet(nn.Module):
    def __init__(self):
        super(SpatialNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 96, kernel_size=7, stride=2),
            # nn.batchnorm2d(96),
            nn.ReLU(),
            nn.MaxPool2d(3, stride=2),
            nn.LocalResponseNorm(2),
            nn.Conv2d(96, 256, kernel_size=5, stride=2),
            # nn.batchnorm2d(256),
            nn.ReLU(),
            nn.MaxPool2d(3, stride=2),
            nn.LocalResponseNorm(2),
            nn.Conv2d(256, 512, kernel_size=3),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3),
            # nn.batchnorm2d(512),            
            nn.ReLU(),
            nn.MaxPool2d(3, stride=2),
        )

        self.classifier = nn.Sequential(
            nn.Linear(2048, 4096),
            nn.Dropout(),
            nn.Linear(4096, 2048),
            nn.Dropout(),
            nn.Linear(2048, 5),
            
        )
    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x
    
class TemporalNet(nn.Module):
    def __init__(self):
        super(TemporalNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 96, kernel_size=7, stride=2),
            # nn.batchnorm2d(96),
            nn.ReLU(),
            nn.MaxPool2d(3, stride=2),
            nn.LocalResponseNorm(2),
            nn.Conv2d(96, 256, kernel_size=5, stride=2),
            # nn.batchnorm2d(256),
            nn.ReLU(),
            nn.MaxPool2d(3, stride=2),
            nn.LocalResponseNorm(2),
            nn.Conv2d(256, 512, kernel_size=3),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3),
            # nn.batchnorm2d(512),            
            nn.ReLU(),
            nn.MaxPool2d(3, stride=2),
        )

        self.classifier = nn.Sequential(
            nn.Linear(2048, 4096),
            nn.Dropout(),
            nn.Linear(4096, 2048),
            nn.Dropout(),
            nn.Linear(2048, 5),
            
        )
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-07-17 16:23:46  更:2022-07-17 16:28:18 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 0:38:33-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码