IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 图像处理 OpenCV基本操作 -> 正文阅读

[人工智能]图像处理 OpenCV基本操作

一、图像的基础操作

1. 图像的IO操作

这里我们会给大家介绍如何读取图像,如何显示图像和如何保存图像。

1.1 读取图像

API

cv.imread()

参数:

  • 要读取的图像

  • 读取方式的标志

    • cv.IMREAD*COLOR:以彩色模式加载图像,任何图像的透明度都将被忽略。这是默认参数。
    • cv.IMREAD*GRAYSCALE:以灰度模式加载图像
    • cv.IMREAD_UNCHANGED:包括alpha通道的加载图像模式。
      可以使用1、0或者-1来替代上面三个标志

参考代码

import numpy as np
import cv2 as cv
# 以灰度图的形式读取图像
img = cv.imread('messi5.jpg',0)

注意:如果加载的路径有错误,不会报错,会返回一个None值

1.2 显示图像

API

cv.imshow()

参数:

  • 显示图像的窗口名称,以字符串类型表示
  • 要加载的图像

注意:在调用显示图像的API后,要调用cv.waitKey()给图像绘制留下时间,否则窗口会出现无响应情况,并且图像无法显示出来

另外我们也可使用matplotlib对图像进行展示。

参考代码

# opencv中显示
cv.imshow('image',img)
cv.waitKey(0)
# matplotlib中展示
plt.imshow(img[:,:,::-1])

1.3 保存图像

API

cv.imwrite()

参数:

  • 文件名,要保存在哪里
  • 要保存的图像

参考代码

cv.imwrite('messigray.png',img)

1.4 总结

我们通过加载灰度图像,显示图像,如果按’s’并退出则保存图像,或者按ESC键直接退出而不保存。

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
# 1 读取图像
img = cv.imread('messi5.jpg',0)
# 2 显示图像
# 2.1 利用opencv展示图像
cv.imshow('image',img)
# 2.2 在matplotplotlib中展示图像
plt.imshow(img[:,:,::-1])
plt.title('匹配结果'), plt.xticks([]), plt.yticks([])
plt.show()
k = cv.waitKey(0)
# 3 保存图像
cv.imwrite('messigray.png',img)

2. 绘制几何图形

2.1 绘制直线

cv.line(img,start,end,color,thickness)

参数:

  • img:要绘制直线的图像
  • Start,end: 直线的起点和终点
  • color: 线条的颜色
  • Thickness: 线条宽度

2.2 绘制圆形

cv.circle(img,centerpoint, r, color, thickness)

参数:

  • img:要绘制圆形的图像
  • Centerpoint, r: 圆心和半径
  • color: 线条的颜色
  • Thickness: 线条宽度,为-1时生成闭合图案并填充颜色

2.3 绘制矩形

cv.rectangle(img,leftupper,rightdown,color,thickness)

参数:

  • img:要绘制矩形的图像
  • Leftupper, rightdown: 矩形的左上角和右下角坐标
  • color: 线条的颜色
  • Thickness: 线条宽度

2.4 向图像中添加文字

cv.putText(img,text,station, font, fontsize,color,thickness,cv.LINE_AA)

参数:

  • img: 图像
  • text:要写入的文本数据
  • station:文本的放置位置
  • font:字体
  • Fontsize :字体大小

2.5 效果展示

我们生成一个全黑的图像,然后在里面绘制图像并添加文字

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
# 1 创建一个空白的图像
img = np.zeros((512,512,3), np.uint8)
# 2 绘制图形
cv.line(img,(0,0),(511,511),(255,0,0),5)
cv.rectangle(img,(384,0),(510,128),(0,255,0),3)
cv.circle(img,(447,63), 63, (0,0,255), -1)
font = cv.FONT_HERSHEY_SIMPLEX
cv.putText(img,'OpenCV',(10,500), font, 4,(255,255,255),2,cv.LINE_AA)
# 3 图像展示
plt.imshow(img[:,:,::-1])
plt.title('匹配结果'), plt.xticks([]), plt.yticks([])
plt.show()

结果:

在这里插入图片描述

3. 获取并修改图像中的像素点

我们可以通过行和列的坐标值获取该像素点的像素值。对于BGR图像,它返回一个蓝,绿,红值的数组。对于灰度图像,仅返回相应的强度值。使用相同的方法对像素值进行修改。

import numpy as np
import cv2 as cv
img = cv.imread('messi5.jpg')
# 获取某个像素点的值
px = img[100,100]
# 仅获取蓝色通道的强度值
blue = img[100,100,0]
# 修改某个位置的像素值
img[100,100] = [255,255,255]

4. 获取图像的属性

图像属性包括行数,列数和通道数,图像数据类型,像素数等。

在这里插入图片描述

5. 图像通道的拆分与合并

有时需要在B,G,R通道图像上单独工作。在这种情况下,需要将BGR图像分割为单个通道。或者在其他情况下,可能需要将这些单独的通道合并到BGR图像。你可以通过以下方式完成。

# 通道拆分
b,g,r = cv.split(img)
# 通道合并
img = cv.merge((b,g,r))

6. 色彩空间的改变

OpenCV中有150多种颜色空间转换方法。最广泛使用的转换方法有两种,BGR?Gray和BGR?HSV。

API:

cv.cvtColor(input_image,flag)

参数:

  • input_image: 进行颜色空间转换的图像
  • flag: 转换类型
    • cv.COLOR_BGR2GRAY : BGR?Gray
    • cv.COLOR_BGR2HSV: BGR→HSV

二、算数操作

1. 图像的加法

你可以使用OpenCV的cv.add()函数把两幅图像相加,或者可以简单地通过numpy操作添加两个图像,如res = img1 + img2。两个图像应该具有相同的大小和类型,或者第二个图像可以是标量值。

注意:OpenCV加法和Numpy加法之间存在差异。OpenCV的加法是饱和操作,而Numpy添加是模运算

参考以下代码:

>>> x = np.uint8([250])
>>> y = np.uint8([10])
>>> print( cv.add(x,y) ) # 250+10 = 260 => 255
[[255]]
>>> print( x+y )          # 250+10 = 260 % 256 = 4
[4]

这种差别在你对两幅图像进行加法时会更加明显。OpenCV 的结果会更好一点。所以我们尽量使用 OpenCV 中的函数。

我们将下面两幅图像:

在这里插入图片描述

代码:

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

# 1 读取图像
img1 = cv.imread("view.jpg")
img2 = cv.imread("rain.jpg")

# 2 加法操作
img3 = cv.add(img1,img2) # cv中的加法
img4 = img1+img2 # 直接相加

# 3 图像显示
fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(10,8),dpi=100)
axes[0].imshow(img3[:,:,::-1])
axes[0].set_title("cv中的加法")
axes[1].imshow(img4[:,:,::-1])
axes[1].set_title("直接相加")
plt.show()

结果如下所示:

在这里插入图片描述

2. 图像的混合

这其实也是加法,但是不同的是两幅图像的权重不同,这就会给人一种混合或者透明的感觉。图像混合的计算公式如下:

g ( x ) = ( 1 ? α ) f 0 ( x ) + α f 1 ( x ) g(x) = (1?α)f0(x) + αf1(x) g(x)=(1?α)f0(x)+αf1(x)

通过修改 α 的值(0 → 1),可以实现非常炫酷的混合。

现在我们把两幅图混合在一起。第一幅图的权重是0.7,第二幅图的权重是0.3。函数cv2.addWeighted()可以按下面的公式对图片进行混合操作。

d s t = α ? i m g 1 + β ? i m g 2 + γ dst = α?img1 + β?img2 + γ dst=α?img1+β?img2+γ

这里γ取为零。

参考以下代码:

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

# 1 读取图像
img1 = cv.imread("view.jpg")
img2 = cv.imread("rain.jpg")

# 2 图像混合
img3 = cv.addWeighted(img1,0.7,img2,0.3,0)

# 3 图像显示
plt.figure(figsize=(8,8))
plt.imshow(img3[:,:,::-1])
plt.show()

窗口将如下图显示:

在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-07-20 18:51:13  更:2022-07-20 18:54:19 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/29 9:21:58-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计