IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> YOLO7 姿势识别实例 -> 正文阅读

[人工智能]YOLO7 姿势识别实例

上文搭建了YOLO7开发环境,并进行了物体定位测试。参见:YOLO7环境搭建、代码测试。本文将介绍如何使用YOLO7进行姿势识别。
姿势识别

1. 预训练模型

下载YOLO7姿势识别预训练模型(点击下载),将下载的yolov7-w6-pose.pt放到YOLO7项目根目录下。
预训练模型下载

2. 测试代码

在项目跟目录下,新建文件pos_reg.py,并输入如下代码:

# 姿势识别

# 导入类库
import matplotlib.pyplot as plt
import torch
import cv2
from torchvision import transforms
import numpy as np
from utils.datasets import letterbox
from utils.general import non_max_suppression_kpt
from utils.plots import output_to_keypoint, plot_skeleton_kpts

# 加载模型
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
weigths = torch.load('yolov7-w6-pose.pt')
model = weigths['model']
model = model.half().to(device)
_ = model.eval()


# 读取图片
image = cv2.imread('./person.jpg')
image = letterbox(image, 960, stride=64, auto=True)[0]
image_ = image.copy()
image = transforms.ToTensor()(image)
image = torch.tensor(np.array([image.numpy()]))
image = image.to(device)
image = image.half()

# 姿势识别
output, _ = model(image)

# 输出结果
output = non_max_suppression_kpt(output, 0.25, 0.65, nc=model.yaml['nc'], nkpt=model.yaml['nkpt'], kpt_label=True)
output = output_to_keypoint(output)
nimg = image[0].permute(1, 2, 0) * 255
nimg = nimg.cpu().numpy().astype(np.uint8)
nimg = cv2.cvtColor(nimg, cv2.COLOR_RGB2BGR)
for idx in range(output.shape[0]):
    plot_skeleton_kpts(nimg, output[idx, 7:].T, 3)


# 保存结果
cv2.imwrite("pos_reg.jpg",nimg)


3. 运行代码

找一张图片放到项目根目录下(示例图片下载),命名为person.jpg。打开并运行pos_reg.py,运行完成后会输出pos_reg.jpg,即姿势识别后的图片。
运行代码
姿势识别

4. 问题

如果提示错误:RuntimeError: Can’t call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.,则需修改utils/plots.py的442行和443行,将将cpu().numpy()修改为cpu().detach().numpy()

def output_to_keypoint(output):
    # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
    targets = []
    for i, o in enumerate(output):
        kpts = o[:,6:]
        o = o[:,:6]
        # 将cpu().numpy()修改为cpu().detach().numpy()
        for index, (*box, conf, cls) in enumerate(o.cpu().detach().numpy()): 
            targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf, *list(kpts.cpu().detach().numpy()[index])])
    return np.array(targets)
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-07-21 21:32:47  更:2022-07-21 21:33:28 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 2:04:40-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码