IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 深度学习Course2第二周Hyperparameter tuning Batch Normalization Programming Frameworks习题整理 -> 正文阅读

[人工智能]深度学习Course2第二周Hyperparameter tuning Batch Normalization Programming Frameworks习题整理

Hyperparameter tuning, Batch Normalization, Programming Frameworks

  1. Which of the following are true about hyperparameter search?
  • Choosing values in a grid for the hyperparameters is better when the number of hyperparameters to tune is high since it provides a more ordered way to search.
  • When sampling from a grid, the number of values for each hyperparameter is larger than when using random values.
  • When using random values for the hyperparameters they must be always uniformly distributed.
  • Choosing random values for the hyperparameters is convenient since we might not know in advance which hyperparameters are more important for the problem at hand.
  1. If it is only possible to tune two parameters from the following due to limited computational resources. Which two would you choose?
  • β1 , β2 in Adam.
  • α
  • ? in Adam.
  • The β parameter of the momentum in gradient descent.
  1. Using the “Panda” strategy, it is possible to create several models. True/False?
  • False
  • True
  1. If you think β \beta β (hyperparameter for momentum) is between 0.9 and 0.99, which of the following is the recommended way to sample a value for beta?
  • r = np.random.rand()
    beta = r*0.9 + 0.09
  • r = np.random.rand()
    beta = 1-10**(- r - 1)
  • r = np.random.rand()
    beta = 1-10**(- r + 1)
  • r = np.random.rand()
    beta = r*0.09 + 0.9
  1. Finding good hyperparameter values is very time-consuming. So typically you should do it once at the start of the project, and try to find very good hyperparameters so that you don’t ever have to tune them again. True or false?
  • False
  • True
  1. When using batch normalization it is OK to drop the parameter W [ l ] W^{[l]} W[l] from the forward propagation since it will be subtracted out when we compute z ~ normalize [ l ] \tilde{z}^{[l]}_{\text{normalize}} z~normalize[l]?= β [ l ] ? z ^ [ l ] \beta^{[l]} \, \hat{z}^{[l]} β[l]z^[l]+ γ [ l ] \gamma^{[l]} γ[l]. True/False?
  • True
  • False
  1. In the normalization formula z n o r m ( i ) = z ( i ) ? μ σ 2 + ε z_{norm}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^2 + \varepsilon}} znorm(i)?=σ2+ε ?z(i)?μ? , why do we use epsilon?
  • To speed up convergence
  • To have a more accurate normalization
  • In case μ μ μ is too small
  • To avoid division by zero
  1. **Which of the following statements about γ \gamma γ and β \beta β in Batch Norm are true? **
  • They set the mean and variance of the linear variable z ^ [ l ] \hat{z}^{[l]} z^[l] of a given layer.
  • There is one global value of γ ∈ R γ∈R γR and one global value of β ∈ R β∈R βR for each layer, and these apply to all the hidden units in that layer.
  • The optimal values are γ = σ 2 + ε γ=\sqrt{σ2+ε} γ=σ2+ε ?, and β = μ β=μ β=μ.
  • They can be learned using Adam, Gradient descent with momentum, or RMSprop, not just with gradient descent.
  • β β β and γ γ γ are hyperparameters of the algorithm, which we tune via random sampling.
  1. A neural network is trained with Batch Norm. At test time, to evaluate the neural network on a new example you should perform the normalization using μ \mu μ and σ 2 \sigma^2 σ2 estimated using an exponentially weighted average across mini-batches seen during training. True/false?
  • True
  • False
  1. Which of the following are some recommended criteria to choose a deep learning framework?
  • It must be implemented in C to be faster.
  • It must run exclusively on cloud services, to ensure its robustness.
  • It must use Python as the primary language.
  • Running speed.
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-08-06 10:44:55  更:2022-08-06 10:48:46 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 0:45:07-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码