一、概述
(1)物以类聚,人以群分,聚类分析是一种重要的多变量统计方法,但记住其实它是一种数据分析方法,不能进行统计推断的。当然,聚类分析主要应用在市场细分等领域,也经常采用聚类分析技术来实现对抽样框的分层。它和分类不同,它属于无监督问题。
(2)常用聚类方法:K-means聚类、密度聚类方法DBSCAN、
二、K-MEANS算法
基本概念:
- 要得到簇的个数,需要指定k值
- 质心:均值,即向量各维取平均即可。
- 距离的度量:常用欧式距离(先标准化)
- 优化目标:
?
三、工作流程?
?四、优缺点:
优点:操作简单,快速,适合常规数据集
缺点:
- k值很难确定
- 复杂度与样本呈线性关系
- 很难发现任意形状的簇
五、代码实现?
1.导包
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_blobs #生成数据函数
from sklearn import metrics
2.生成平面数据点+标准化
n_samples = 1500
X,y = make_blobs(n_samples=n_samples,centers=4,random_state=170)
X = StandardScaler().fit_transform(X) #标准化
3.调用kmeans包
Kmeans=KMeans(n_clusters=4,random_state=170)
Kmeans.fit(X)
4.可视化效果
plt.figure(figsize=(12,6))
plt.subplot(121)
plt.scatter(X[:,0],X[:,1],c='r')
plt.title("聚类前数据图")
plt.subplot(122)
plt.scatter(X[:,0],X[:,1],c=Kmeans.labels_)
plt.title("聚类后数据图")
plt.show()
结果如图:
六、K-MEANS算法程序,代码如下:
class KMEANS:
def_init_(self,data,num_clustres):
self.data=data
self.num_clustres=num_clustres
def train(self,max_iterations):
#1.先随机选择k个中心点
centroids=KMEANS.centroids_init(self.data,self.num_clustres)
#2.开始训练
num_exxamples=self.data.shape[0]
closest_ centroids_ids=np.empty((num_examples,1))
for _ in range(max_iterations):
#3得到当前每个样本到k个中心点的距离,找最近的
closest_centroids_ids=KMEANS.centroids_find_closest(self.data,centroids)
#进行中心点位置更新
centroids=KMEANS.centroids_compute(self.data,closest_centroids_ids,self.num_clustres)
return centroids,closest_ centroids_ids
接下来是三个方法:
def centroids_init(self,data,num_clustres):
num_examples=data.shape[0]
random_ids=np.random.permutation(num_examples)
centroids=data[random_ids[:num__clustres],:]
return centroids
def centroids_find_closest(self,data,centroids ) :
num_examples = self.data.shape[0]
num_centroids = centroids.shape[0]
closest_centroids_ids = np.zeros((num_examples,1))
for example_index in range( num_examples) :
distance = np.zeros( num_centroids,1)
for centroid_index in range(num_centroids) :
distance_diff = data[example_index, : ] - centroids[centroid_index,distance[centroid_index]
= np.sum(distance_diff**2)
closest_centroids_ids[example_index] = np.argmin(distance)
return closest_centroids_ids
def centroids_compute(self ,data,closest_centroids_ids,num_clustres):
num_features = data.shape[0]
centroids = np.zeros((num_ciustres,num_features))
for centnoid_id in range(num_clustres) :
closest_ids = closest_centroids_ids == centroid_id
centroids[closest_ids] = np.mean( aareturn centroids.flatten(),:],axis=0)
return centroids
|