| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 学神经网络应该看看哪些书神经网络相关书籍 -> 正文阅读 |
|
[人工智能]学神经网络应该看看哪些书神经网络相关书籍 |
有什么适合深度学习的书单吗?。 12本最好的深度学习书籍:1.用Scikit-Learn和TensorFlow进行机器学习2.深度学习(DeepLearning)3.DeepLearningfortheLayman(为外行准备的深度学习)4.建立你自己的神经网络(MakeYourOwnNeuralNetwork)5.深度学习初学者(DeepLearningforBeginners)6.神经网络和深度学习(NeuralNetworksandDeepLearning:DeepLearningexplainedtoyourgranny)7.深度学习基础:设计下一代机器智能算法(FundamentalsofDeepLearning:DesigningNext-GenerationMachineIntelligenceAlgorithms)8.学习TensorFlow:构建深度学习系统的指南(LearningTensorFlow:AGuidetoBuildingDeepLearningSystems)9.用Python深入学习(DeepLearningwithPython)10.深度学习:从业者的方法(DeepLearning:APractitioner’sApproach)11.用TensorFlow进行专业深度学习(ProDeepLearningwithTensorFlow)12.用于深度学习的TensorFlow(TensorFlowforDeepLearning)以上供参考。 谷歌人工智能写作项目:小发猫 深度学习入门必看的书和论文?有哪些必备的技能需学习先了解个大概ADeepLearningTutorial:FromPerceptronstoAlgorithms神经网络肯定是要学习的,主要是BP算法,可以看看PRML3、4、5三章,可先忽略其中的贝叶斯视角的解释。 一些主要的算法理解要看具体的论文了,有个Matlab的程序不错,有基本算法的实现,见rasmusbergpalm/DeepLearnToolbox·GitHub。 有一本系统的介绍深度学习的书,不过还没写完,样稿见DEEPLEARNING。 还有评论中提到的UFLDL教程:UnsupervisedFeatureLearningandDeepLearningTutorial。 有哪些 Python 经典书籍。 《深度学习入门》([日]斋藤康毅)电子书网盘下载免费在线阅读资源链接:链接:?pwd=bhct提取码:bhct?书名:深度学习入门作者:[日]斋藤康毅译者:陆宇杰豆瓣评分:9.4出版社:人民邮电出版社出版年份:2018-7页数:285内容简介:本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。 书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。 书中不仅介绍了深度学习和神经网络的概念、特征等基础知识,对误差反向传播法、卷积神经网络等也有深入讲解,此外还介绍了深度学习相关的实用技巧,自动驾驶、图像生成、强化学习等方面的应用,以及为什么加深层可以提高识别精度等“为什么”的问题。 作者简介:斋藤康毅东京工业大学毕业,并完成东京大学研究生院课程。现从事计算机视觉与机器学习相关的研究和开发工作。 是IntroducingPython、PythoninPractice、TheElementsofComputingSystems、BuildingMachineLearningSystemswithPython的日文版译者。 译者简介:陆宇杰众安科技NLP算法工程师。主要研究方向为自然语言处理及其应用,对图像识别、机器学习、深度学习等领域有密切关注。Python爱好者。 《神经网络与深度学习》吴岸城这本shu怎么样有卷积神经网络/循环神经网络的matlab编程书籍吗,求推荐,能分享最好。 推荐书籍:《MATLAB深度学习机器学习、神经网络与人工智能》作者:(美)PhilKim著;敖富江,杜静,周浩译出版发行:北京:清华大学出版社,2018.03本书共6章,内容包括:机器学习、神经网络、多层神经网络的训练、神经网络与分类问题、深度学习、卷积神经网络。 《神经网络与深度学习讲义》pdf下载在线阅读全文,求百度网盘云资源求《神经网络与深度学习讲义》全文免费下载百度网盘资源,谢谢~《精通数据科学:从线性回归到深度学习》pdf下载在线阅读,求百度网盘云资源。 《精通数据科学:从线性回归到深度学习》(唐亘)电子书网盘下载免费在线阅读资源链接:链接:提取码:ymft?书名:精通数据科学:从线性回归到深度学习作者:唐亘豆瓣评分:7.2出版社:人民邮电出版社出版年份:2018-5-8页数:432内容简介:数据科学是一门内涵很广的学科,它涉及到统计分析、机器学习以及计算机科学三方面的知识和技能。 本书深入浅出、全面系统地介绍了这门学科的内容。本书分为13章,最初的3章主要介绍数据科学想要解决的问题、常用的IT工具Python以及这门学科所涉及的数学基础。 第4-7章主要讨论数据模型,主要包含三方面的内容:一是统计中最经典的线性回归和逻辑回归模型;二是计算机估算模型参数的随机梯度下降法,这是模型工程实现的基础;三是来自计量经济学的启示,主要涉及特征提取的方法以及模型的稳定性。 接下来的8-10章主要讨论算法模型,也就是机器学习领域比较经典的模型。这三章依次讨论了监督式学习、生成式模型以及非监督式学习。目前数据科学最前沿的两个领域分别是大数据和人工智能。 本书的第11章将介绍大数据中很重要的分布式机器学习,而本书的最后两章将讨论人工智能领域的神经网络和深度学习。 本书通俗易懂,而且理论和实践相结合,可作为数据科学家和数据工程师的学习用书,也适合对数学科学有强烈兴趣的初学者使用。同时也可作为高等院校计算机、数学及相关专业的师生用书和培训学校的教材。 作者简介:唐亘,数据科学家,专注于机器学习和大数据,热爱并积极参与ApacheSpark、scikit-learn等开源项目。 作为讲师和技术顾问,为多家机构(包括惠普、华为、复旦大学等)提供百余场技术培训。 此前的工作和研究集中于经济和量化金融,曾参与经济合作与发展组织(OECD)的研究项目并发表论文,并担任英国知名在线出版社Packt的技术审稿人。 曾获得复旦大学的数学和计算机双学士学位;巴黎综合理工的金融硕士学位;法国国立统计与经济管理学校的数据科学硕士学位。 有哪些关于人工智能的书籍可供推荐?看到这个问题有点小兴奋,我来推荐一份人工智能书单。 1、机器学习精讲机器学习原理算法与应用教程,精简机器学习入门手册,美亚机器学习深度学习畅销书,全彩印刷,扫描书中二维码可阅读补充内容,人工智能和机器学习领域众多知名专家推荐。 2、动手学深度学习目前市面上有关深度学习介绍的书籍大多可分两类,一类侧重方法介绍,另一类侧重实践和深度学习工具的介绍。本书同时覆盖方法和实践。 本书不仅从数学的角度阐述深度学习的技术与应用,还包含可运行的代码,为读者展示如何在实际中解决问题。 为了给读者提供一种交互式的学习体验,本书不但提供免费的教学视频和讨论区,而且提供可运行的Jupyter记事本文件,充分利用Jupyter记事本能将文字、代码、公式和图像统一起来的优势。 这样不仅直接将数学公式对应成实际代码,而且可以修改代码、观察结果并及时获取经验,从而带给读者全新的、交互式的深度学习的学习体验。 3、深度学习本书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。 同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等。 并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。 最后,本书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型。 4、人工智能(第2版)本书是作者结合多年教学经验、精心撰写的一本人工智能教科书,堪称“人工智能的百科全书”。 全书涵盖了人工智能简史、搜索方法、知情搜索、博弈中的搜索、人工智能中的逻辑、知识表示、产生式系统、专家系统、机器学习和神经网络、遗传算法、自然语言处理、自动规划、机器人技术、高级计算机博弈、人工智能的历史和未来等主题。 5、Python神经网络编程本书将带领您进行一场妙趣横生却又有条不紊的旅行——从一个非常简单的想法开始,逐步理解神经网络的工作机制。 您无需任何超出中学范围的数学知识,并且本书还给出易于理解的微积分简介。本书的目标是让尽可能多的普通读者理解神经网络。 读者将学习使用Python开发自己的神经网络,训练它识别手写数字,甚至可以与专业的神经网络相媲美。 ? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/25 23:14:42- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |