IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 深度学习:Softmax回归 -> 正文阅读

[人工智能]深度学习:Softmax回归

???????在前面,我们介绍了线性回归模型的原理及实现。线性回归适合于预测连续值,而对于分类问题的离散值则束手无策。因此引出了本文所要介绍的softmax回归模型,该模型是针对多分类问题所提出的。下面我们将从softmax回归模型的原理开始介绍,最后我们同样会基于PyTorch来实现基本的softmax模型。

1、分类问题

???????假设现在我们需要对图像进行分类,每次输入的数据是一个2x2的灰度图像。如果用一个标量来表示每个像素值,则每个图像可以对应 x 1 , x 2 , x 3 , x 4 x_1,x_2,x_3,x_4 x1?,x2?,x3?,x4?四个特征,因此可以用一个特征向量 ( x 1 , x 2 , x 3 , x 4 ) (x_1,x_2,x_3,x_4) (x1?,x2?,x3?,x4?)来表示图像。

???????另外,假设每个图像属于类别“猫”,“鸡”和“狗”其中一个,那么我们可以使用独热编码(one-hot encoding)来表示分类数据。例如标签 y y y是一个三维向量,其中[1,0,0]对应“猫”类别、[0,1,0]对应“鸡”类别、[0,0,1]对应“狗”类别:
y ∈ { ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) } . (1) y\in\{(1,0,0),(0,1,0),(0,0,1)\}.\tag{1} y{(1,0,0),(0,1,0),(0,0,1)}.(1)

2、模型网络架构

???????在分类问题中,我们需要估计一张图像对于所有类别的条件概率,每一个类别对应则一个输出,则该模型是一个具有n个输入和m个输出的回归模型(n是图像的特征向量长度,m是类别数量)。

???????在上面的例子中,我们有4个输入特征和3个可能的输出类别,因此我们需要12个标量来表示权重(w),3个标量来表示偏置(b),计算每个类别未规范化的条件概率:
o 1 = x 1 w 11 + x 2 w 12 + x 3 w 13 + x 4 w 14 + b 1 o 2 = x 1 w 21 + x 2 w 22 + x 3 w 23 + x 4 w 24 + b 2 o 3 = x 1 w 31 + x 2 w 32 + x 3 w 33 + x 4 w 34 + b 3 . (2) o_1=x_1w_{11}+x_2w_{12}+x_3w_{13}+x_4w_{14}+b_1 \\ o_2=x_1w_{21}+x_2w_{22}+x_3w_{23}+x_4w_{24}+b_2 \\ o_3=x_1w_{31}+x_2w_{32}+x_3w_{33}+x_4w_{34}+b_3 .\tag{2} o1?=x1?w11?+x2?w12?+x3?w13?+x4?w14?+b1?o2?=x1?w21?+x2?w22?+x3?w23?+x4?w24?+b2?o3?=x1?w31?+x2?w32?+x3?w33?+x4?w34?+b3?.(2)
???????(2)中的 o 1 , o 2 , o 3 o_1,o_2,o_3 o1?,o2?,o3?就是图像对于所有类别的条件概率,只不过此时还没有对概率进行规范化,还不能符合我们的要求(所有类别的条件概率之和为1)。

???????我们用矩阵形式来表示 x , W , b , o x,W,b,o x,W,b,o
x = [ x 1 x 2 x 3 x 4 ] ? W = [ w 11 w 12 w 13 w 14 w 21 w 22 w 23 w 24 w 31 w 32 w 33 w 34 ] ?????? b = [ b 1 b 2 b 3 ] ? o = [ o 1 o 2 o 3 ] . (3) x=\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}\\\ \\W=\begin{bmatrix} w_{11} & w_{12} & w_{13} & w_{14}\\ w_{21} & w_{22} & w_{23} & w_{24}\\ w_{31} & w_{32} & w_{33} & w_{34}\\ \end{bmatrix} \,\,\,\,\,\,b=\begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}\\\ \\o=\begin{bmatrix} o_1 & o_2 & o_3 \end{bmatrix} .\tag{3} x=[x1??x2??x3??x4??]?W=? ??w11?w21?w31??w12?w22?w32??w13?w23?w33??w14?w24?w34??? ??b=[b1??b2??b3??]?o=[o1??o2??o3??].(3)
???????则(2)可以表示为:
o = x W T + b . (4) o=xW^T+b.\tag{4} o=xWT+b.(4)
???????我们还可以用神经网络图(图1)来表示softmax回归模型。与线性回归一样,softmax回归也是单层的神经网络。由于每个输出 o 1 , o 2 , o 3 o_1,o_2,o_3 o1?,o2?,o3?都依赖于所有的输入 x 1 , x 2 , x 3 , x 4 x_1,x_2,x_3,x_4 x1?,x2?,x3?,x4?,因此softmax回归的输出层还是一个全连接层。

image-20220811144240396
图1:softmax回归的神经网络图

3、softmax运算

???????在上面,我们由权重与输?特征进?矩阵-向量乘法再加上偏置b得到的输出 o 1 , o 2 , o 3 o_1,o_2,o_3 o1?,o2?,o3?。为了获取最终的预测结果,我们使用 arg ? max ? j o j \arg\underset{j}{\max}o_j argjmax?oj?来选择最大的输出 o j o_j oj?作为预测概率。然而,直接将线性层的输出视为概率时存在?些问题:一方面,我们没有限制这些输出值的总和为1。另?方面,根据输入的不同,输出值甚至可能为负值。

???????为了解决上述问题,社会科学家邓肯·卢斯于1959年在选择模型(choice model)的理论基础上发明了softmax函数。 softmax函数将未规范化的预测值变换为非负并且总和为1的概率值,同时保证模型可导。我们?先对每个未规范化的预测求幂,这样可以确保输出非负。为了确保最终输出的总和为1,我们再对每个求幂后的结果除以它们的总和。如下式:
y ^ = s o f t m a x ( o ) ?????? 其中 ?? y j ^ = e x p ( o j ) ∑ k = 1 q e x p ( o k ) . (5) \hat{y}=softmax(o)\,\,\,\,\,\,其中\,\,\hat{y_j}=\frac{exp(o_j)}{\sum_{k=1}^{q}exp(o_k)}.\tag{5} y^?=softmax(o)其中yj?^?=k=1q?exp(ok?)exp(oj?)?.(5)
???????这?,对于所有的 j j j总有 0 ≤ y j ^ ≤ 1 0 ≤ \hat{y_j} ≤ 1 0yj?^?1。因此,$\hat{y_j} 可以视为?个正确的概率分布。 s o f t m a x 运算并不会改变未规范化的预测 可以视为?个正确的概率分布。softmax运算并不会改变未规范化的预测 可以视为?个正确的概率分布。softmax运算并不会改变未规范化的预测o$之间大小的顺序,只会将每个类别的预测值转换概率值。因此,在预测过程中,我们可以用下式来选择输入图像最有可能的类别:
arg ? max ? j y j ^ = arg ? max ? j o j . (6) \arg\underset{j}{\max}\hat{y_j}=\arg\underset{j}{\max}o_j.\tag{6} argjmax?yj?^?=argjmax?oj?.(6)
???????尽管softmax是?个?线性函数,但softmax回归的输出仍然由输?特征的仿射变换决定。因此,softmax回归是?个线性模型(linear model)。

4、小批量样本的矢量化

???????为了提?计算效率并且充分利用GPU,我们通常会针对小批量数据执行矢量计算。假设我们读取了?个批量的样本 X X X,其中特征维度(输?数量)为d,批量大小为n。此外,假设我们在输出中有q个类别。那么小批量样本的特征为 X ∈ R n × d X\in\R^{n×d} XRn×d,权重为 W ∈ R d × q W\in\R^{d×q} WRd×q,偏置为 b ∈ R 1 × q b\in\R^{1×q} bR1×q。softmax回归的小批量样本的?量计算表达式为:
O = X W T + b Y ^ = s o f t m a x ( O ) . (7) O=XW^T+b\\ \hat{Y}=softmax(O).\tag{7} O=XWT+bY^=softmax(O).(7)

5、损失函数

???????接下来,我们需要一个损失函数来评估预测的效果。由于在softmax回归中,我们只关心正确类别的预测概率,而不需要像线性回归那么精确地预测数值,因此我们使用交叉熵损失函数来评估模型的预测效果:
l ( y , y ^ ) = ? ∑ j = 1 q y j l o g ? y j ^ . (8) l(y,\hat{y})=-\sum_{j=1}^{q}{y_j}log\,{\hat{y_j}}.\tag{8} l(y,y^?)=?j=1q?yj?logyj?^?.(8)
???????又因为正确标签向量 y y y中只有一个标量为1,其余全为0,因此(8)可化简为:
l ( y , y ^ ) = ? l o g ? y j ^ . (9) l(y,\hat{y})=-log\,\hat{y_j}.\tag{9} l(y,y^?)=?logyj?^?.(9)
???????为了使(8)更好做偏导计算,我们将(5)代入(8)中:
l ( y , y ^ ) = ? ∑ j = 1 q y j l o g ? e x p ( o j ) ∑ k = 1 q e x p ( o k ) = ∑ j = 1 q y j l o g ? ∑ k = 1 q e x p ( o k ) ? ∑ j = 1 q y j o j = l o g ∑ k = 1 q e x p ( o k ) ? ∑ j = 1 q y j o j . (10) l(y,\hat{y})=-\sum_{j=1}^{q}y_jlog\,\frac{exp(o_j)}{\sum_{k=1}^{q}exp(o_k)}\\ \qquad\qquad\quad=\sum_{j=1}^{q}y_jlog\,\sum_{k=1}^qexp(o_k)-\sum_{j=1}^qy_jo_j\\ \qquad\quad=log\sum_{k=1}^qexp(o_k)-\sum_{j=1}^qy_jo_j.\tag{10} l(y,y^?)=?j=1q?yj?logk=1q?exp(ok?)exp(oj?)?=j=1q?yj?logk=1q?exp(ok?)?j=1q?yj?oj?=logk=1q?exp(ok?)?j=1q?yj?oj?.(10)

6、参数更新

???????我们对交叉熵损失函数(10)求导,获取 l ( y , y ^ ) l(y,\hat{y}) l(y,y^?)关于 o j o_j oj?的梯度:
? o j ? l ( y , y ^ ) = e x p ( o j ) ∑ k = 1 q e x p ( o k ) ? y j = s o f t m a x ( o ) j ? y j . (11) \partial_{o_j}\,l(y,\hat{y})=\frac{exp(o_j)}{\sum_{k=1}^{q}exp(o_k)}-y_j\\ \qquad\qquad=softmax(o)_j-y_j.\tag{11} ?oj??l(y,y^?)=k=1q?exp(ok?)exp(oj?)??yj?=softmax(o)j??yj?.(11)

???????然后采用梯度下降法,softmax回归的训练过程为:采用正态分布来初始化权重 W W W,然后通过下式进行迭代更新:
W t + 1 ← W t ? α [ 1 N ∑ n = 1 N ( s o f t m a x ( o ) j ? y j ) ] . (12) W_{t+1}←W_t-\alpha[\frac{1}{N}\sum_{n=1}^{N}(softmax(o)_j-y_j)].\tag{12} Wt+1?Wt??α[N1?n=1N?(softmax(o)j??yj?)].(12)

7、实现softmax回归模型

7.1、读取数据集

???????在本节中,我们用softmax回归来实现图像识别。在此之前,我们先下载Fashion-MNIST数据集。

import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()

???????通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中。

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0到1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
    root="/data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
    root="/data", train=False, transform=trans, download=True)

???????Fashion-MNIST由10个类别的图像组成, 每个类别由训练数据集(train dataset)中的6000张图像 和测试数据集(test dataset)中的1000张图像组成。 因此,训练集和测试集分别包含60000和10000张图像。 测试数据集不会用于训练,只用于评估模型性能。

len(mnist_train), len(mnist_test)
image-20220813103346218

???????每个输入图像的高度和宽度均为28像素。 数据集由灰度图像组成,其通道数为1。

mnist_train[0][0].shape
image-20220813103546092

???????Fashion-MNIST中包含的10个类别,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)。 以下函数用于在数字标签索引及其文本名称之间进行转换。

def get_fashion_mnist_labels(labels):  #@save
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

???????创建一个函数来可视化这些样本。

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes

???????我们将一个小批量的数据集可视化出来看看。

X, y = next(iter(data.DataLoader(mnist_train, batch_size=15)))
show_images(X.reshape(15, 28, 28), 3, 5, titles=get_fashion_mnist_labels(y));
image-20220813104027538

???????为了使我们在读取训练集和测试集时更容易,我们使用内置的数据迭代器,而不是从零开始创建。 回顾一下,在每次迭代中,数据加载器每次都会读取一小批量数据,大小为batch_size。 通过内置数据迭代器,我们可以随机打乱了所有样本,从而无偏见地读取小批量,并通过多线程来读取数据。

batch_size = 256

def get_dataloader_workers():  #@save
    """使用4个进程来读取数据"""
    return 4

train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
                             num_workers=get_dataloader_workers())

???????读取一个小批量数据集所需的时间:

timer = d2l.Timer()
for X, y in train_iter:
    continue
f'{timer.stop():.2f} sec'
image-20220813104914506

???????为了方便使用,我们将上述的代码整合为一个函数。

# 整合上述所有组件
def load_data_fashion_mnist(batch_size, resize=None):  #@save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="/data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="/data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))

???????随后,我们使用load_data_fashion_mnist来读取数据集,并通过resize参数调整图像的尺寸。

train_iter, test_iter = load_data_fashion_mnist(32, resize=28)
for X, y in train_iter:
    print(X.shape, X.dtype, y.shape, y.dtype)
    break
for X,y in test_iter:
    print(X.shape, X.dtype, y.shape, y.dtype)
    break
image-20220813105640238

7.2、从零实现softmax回归

??????? 本节我们将使用刚刚在6.1节中引入的Fashion-MNIST数据集, 并设置数据迭代器的批量大小为256。

import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

7.2.1、初始化参数

???????和之前线性回归的例子一样,这里的每个样本都将用固定长度的向量表示。 原始数据集中的每个样本都是28×28的图像。 在本节中,我们将展平每个图像,把它们看作长度为784的向量。又因为我们的数据集有10个类别,所以网络输出维度为10。 因此,权重将构成一个784×10的矩阵, 偏置将构成一个1×10的行向量。 与线性回归一样,我们将使用正态分布初始化我们的权重W,偏置初始化为0。

num_inputs = 784
num_outputs = 10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

7.2.2、定义softmax激活函数

???????回想一下,实现softmax由三个步骤组成:

  1. 对每个项求幂(使用exp);
  2. 对每一行求和(小批量中每个样本是一行);
  3. 将每项除以所属行的和,确保结果的和为1。

???????softmax的公式定义:

image-20220813162511274

???????实现如下:

def softmax(X):
    X_exp = torch.exp(X)
    partition = X_exp.sum(1, keepdim=True)
    return X_exp / partition  # 这里应用了广播机制

???????我们来验证一下softmax激活函数的效果:

X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
X, X_prob, X_prob.sum(1)
image-20220813162733801

7.2.3、定义模型

???????定义softmax操作后,我们可以实现softmax回归模型。 下面的代码定义了输入如何通过网络映射到输出。 注意,将数据传递到模型之前,我们使用reshape函数将每张原始图像展平为向量。

def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

7.2.4、定义损失函数

???????在softmax回归中,我们只关心正确类别预测的概率,因此我们需要将正确类别的预测概率提取出来参与损失函数计算。

???????为了加快计算速度,我们使用y作为y_hat中概率的索引来提取正确类别的预测概率,而不会考虑使用for循环这种低效的方式。

y = torch.tensor([0, 2]) # 真实的标签
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])   # 预测的概率
y_hat[[0, 1], y]
image-20220813164836567

???????因此我们可以很便捷地实现交叉熵损失函数:

def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])

cross_entropy(y_hat, y)
image-20220813164930362

7.2.5、评估分类精度

???????在实际预测时,我们必须输出最终的预测类别。为了计算分类的精度,首先,如果y_hat是矩阵,那么假定第二个维度存储每个类的预测分数。 我们使用argmax获得每行中最大元素的索引来获得预测类别。 然后我们将预测类别与真实y元素进行比较。 由于等式运算符“==”对数据类型很敏感, 因此我们将y_hat的数据类型转换为与y的数据类型一致。 结果是一个包含0(错)和1(对)的张量。 最后,我们求和会得到正确预测的数量。

def accuracy(y_hat, y):  #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())

???????评估一下分类的精度:

accuracy(y_hat, y) / len(y)

???????同样,对于任意数据迭代器data_iter可访问的数据集, 我们可以评估在任意模型net的精度。

def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

???????这里定义一个实用程序类Accumulator,用于对多个变量进行累加。 在上面的evaluate_accuracy函数中, 我们在Accumulator实例中创建了2个变量, 分别用于存储正确预测的数量和预测的总数量。 当我们遍历数据集时,两者都将随着时间的推移而累加。

class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

7.2.6、训练模型

???????首先,我们定义一个函数来训练一个迭代周期。 请注意,updater是更新模型参数的常用函数,它接受批量大小作为参数。 它可以是d2l.sgd函数,也可以是框架的内置优化函数。

def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

???????然后我们再定义一个Animator函数来可视化训练的过程:

class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)

???????接下来我们实现一个训练函数, 它会在train_iter访问到的训练数据集上训练一个模型net。 该训练函数将会运行多个迭代周期(由num_epochs指定)。 在每个迭代周期结束时,利用test_iter访问到的测试数据集对模型进行评估。 我们将利用Animator类来可视化训练进度。

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

???????我们使用之前线性回归中所定义的小批量随机梯度下降来优化参数。其中,设置学习率lr为0.1。

lr = 0.1 # 学习率

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

???????现在,我们训练模型10个迭代周期。 请注意,迭代周期(num_epochs)和学习率(lr)都是可调节的超参数。 通过更改它们的值,我们可以提高模型的分类精度。

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
image-20220813172929913

7.2.7、预测

???????现在训练已经完成,我们的模型已经准备好对图像进行分类预测。 给定一系列图像,我们将比较它们的实际标签(文本输出的第一行)和模型预测(文本输出的第二行)。

def predict_ch3(net, test_iter, n=6):  #@save
    """预测标签"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter, 5)
image-20220813173621385

8、总结

???????在本文中,我们讨论了softmax回归模型的基本原理和实现方法。softmax回归适合于离散的分类,线性回归适合于预测连续的数值。

9、参考资料

1、动手学深度学习 Release2.0.0-beta0

2、softmax回归原理及损失函数

3、神经网络与深度学习_邱锡鹏

4、深度学习:线性回归模型

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-08-19 19:04:57  更:2022-08-19 19:07:56 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 23:12:03-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码