IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> python实现基于决策树的AdaBoost集成学习器 -> 正文阅读

[人工智能]python实现基于决策树的AdaBoost集成学习器

本文将以周志华《机器学习》中的习题8.3的要求和数据,用python完成一个基于决策树的AdaBoost。

1.题干

从网上下载或自己编程实现AdaBoost,以不剪枝决策树为基学习器,在西瓜数据集3.0α上训练一个AdaBoost集成,并与图8.4进行比较。

西瓜数据集3.0α如下(第一列表示密度,第二列表示含糖量,第三列为数据的标签,表示是否是好瓜):

0.697,0.460,是
0.774,0.376,是
0.634,0.264,是
0.608,0.318,是
0.556,0.215,是
0.403,0.237,是
0.481,0.149,是
0.437,0.211,是
0.666,0.091,否
0.243,0.267,否
0.245,0.057,否
0.343,0.099,否
0.639,0.161,否
0.657,0.198,否
0.360,0.370,否
0.593,0.042,否
0.719,0.103,否

2.python实现

关于adaboost的理论可以参考这篇博客:Adaboost 算法实例解析
这里直接进行实现。

首先,根据题目要求,要实现一个基于不剪枝决策树的Adaboost学习器,学习器可以对西瓜数据进行二分类。
所以,第一步实现决策树,这里按照信息熵来寻找最优的划分属性。另外,我们还需要注意,因为集成学习过程中有权重的概念,所以实现的决策树也要将权重参与计算。

2.1 决策树实现

首先是获取数据部分,从txt读入数据,具体见代码:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import math
import copy

def get_data():
    x = []
    y = []
    with open("./xigua.txt", 'r') as f:
        for line in f.readlines():
            words = line.split(',')
            instance = []
            for word in words[:2]:
                instance.append(float(word))
            x.append(instance)
            if '是' in words[2]:
                y.append(1)
            elif '否' in words[2]:
                y.append(0)
    return x, y

然后,是基于信息熵的决策树中比较重要的部分,求信息熵。信息熵代表数据集的数据纯度,信息熵越高表示数据的类别越杂,反之越纯。
求信息熵的公式:
(pk表示第k类数据的占比,Y等于类别总数)
在这里插入图片描述

def ent(D):
    """
    求信息熵。
    
    Parameters:
    D :  D是一个元组,格式为(w, x, y)。表示数据集,w为权重,x为数据,y为标签。
    
    Returns:
    一个实数,表示信息熵。
    """
    w, x, y = D
    h = 1e-17
    y = np.array(y)
    p0 = np.sum(w * (y == 0)) / np.sum(w)
    p1 = np.sum(w * (y == 1)) / np.sum(w)
    
    return -p0*np.log2(p0 + h) - p1*np.log2(p1 + h)

接下来是信息增益,简单来说,就是通过一次划分信息熵减少了多少。
信息增益公式如下:
(a表示划分属性,Dv表示将D划分后的第v个数据集,V等于划分后的数据集个数)
在这里插入图片描述
另外,我这里的代码没有严格跟公式一样,有个不同的地方:
公式是传入划分属性,然后在函数体内进行划分。这里直接传入的划分好的数据,划分工作交给外部了,反正效果是一样的。

def gain(D, DS):
    """
    求信息增益。
    
    Parameters:
    D :  D是一个元组,格式为(w, x, y)。表示划分前的数据集,w为权重,x为数据,y为标签。
    DS :DS是一个列表,元素为元组,每个元组格式为(w, x, y)。表示划分后的数据集组成的列表。
    
    Returns:
    一个实数gain,表示信息增益。
    """
    dw, dx, dy = D
    original_size = np.sum(dw)
    
    ent_d = ent(D)
    gain = ent_d
    
    for di in DS:
        w, x, y = di
        gain -= (np.sum(w) / original_size) * ent(di)
        
    return gain

接下来就是按照信息增益来找最佳划分属性(best_divider)了,我们需要注意这里的西瓜属性都是离散型数据,所以我们要按照离散型属性的套路来实现。

即对于每个属性,先将训练集按照该属性排序,然后取两两间的中间值看作待选择的divider(比如在本题中就是,对于密度,就将17个西瓜按照密度排序,然后取出16个中间值,同样对于含糖量,将17个西瓜按照含糖量排序,取出16个间隔值,最后能得到32个间隔值,这32个间隔值就是32个divider(divider结构形如 (“密度”, 0.542)))。

然后在得到所有可能的划分依据divider后,按照信息增益来选择增益最大的divider。

def find_best_divider(D, A):
    """
    按照信息增益最大的准则寻找最佳划分。
    
    Parameters:
    D :  同上。
    
    Returns:
    (划分属性,划分属性值)
    """
    w, x, y = D
    best_divider = None
    
    gains = []
    dividers = []
    
    for attr in A: 
        sorted_D = sort_D_by_attr(D, attr)
        sorted_w, sorted_x, sorted_y = sorted_D
        for i in range(len(sorted_x)-1):
            mid_val = (sorted_x[i][attr] + sorted_x[i+1][attr]) / 2.0
            dividers.append((attr, mid_val))
    
    for divider in dividers:
        DS = divide(D, divider)
        gains.append(gain(D, DS))
        
    max_gain = 0
    for i in range(len(gains)):
        if gains[i] > max_gain:
            max_gain = gains[i]
            best_divider = dividers[i]
    
    return best_divider

求信息增益前,需要根据每个divider得到划分结果,划分函数如下:

def divide(D, divider):
    """
    按照divider内容对数据集D进行划分。
    
    Parameters:
    D :  同上。
    divider :(划分属性,划分值)按照划分属性大于和小于划分值情况将D分别划分为D0和D1,并包含进DS
    
    Returns:
    划分完的数据集列表,包含D0和D1
    """
    w, x, y = D
    DS = []
    divider_attr, divider_attr_val = divider
    
    w0, x0, y0 = [],[],[]
    w1, x1, y1 = [],[],[]
    
    for i in range(len(x)):
        if x[i][divider_attr] < divider_attr_val:
            w0.append(w[i])
            x0.append(x[i])
            y0.append(y[i])
        else:
            w1.append(w[i])
            x1.append(x[i])
            y1.append(y[i])
            
    D0 = (w0, x0, y0)
    D1 = (w1, x1, y1)
    DS = [D0, D1]
    return DS

按照属性进行排序:

def sort_D_by_attr(D, attr):
    sorted_D = copy.deepcopy(D)
    w, x, y = sorted_D
    size = len(x)
    for i in range(size-1):
        for j in range(size-i-1):
            if x[j][attr] > x[j+1][attr]:
                t = x[j]
                x[j] = x[j+1]
                x[j+1] = t
                
                t = w[j]
                w[j] = w[j+1]
                w[j+1] = t
                
                t = y[j]
                y[j] = y[j+1]
                y[j+1] = t
                
    return sorted_D

然后,是决策树的节点类:

class Node:
    def __init__(self):
        self.attr = None
        self.attr_val = None
        self.less_than_val_child = None
        self.bigger_than_val_child = None
        self.result_category = None
        
    def is_leaf(self):
        if self.attr is None:
            return True
        else:
            return False
        
    def __str__(self):
        return "划分属性:" + str(self.attr) + ' ' + "划分值:" + str(self.attr_val) + ', ' + "结果:" + str(self.result_category)
    
    def show(self):
        if self is None:
            return
        print(self)
        
        if self.less_than_val_child is not None:
            self.less_than_val_child.show()
        if self.bigger_than_val_child is not None:
            self.bigger_than_val_child.show()
    

然后,就可以实现决策树的训练过程了,整个过程是一个递归过程,递归返回的情况有三种,一种是当前数据集类别相同,则不用划分。第二种是当前数据集的所有属性都相同,没法划分,第三种是当前的数据集是空的,那么不能划分。

def tree_generate(D, A):
    '''
    Parameters:
    D为数据集,A为属性集
    '''
    w, x, y = D
    
    node = Node()
    if is_same_y(D):
        node.result_category = y[0]
        return node
    if A is None or len(A) == 0 or is_same_val_in_A(D, A):
        most_possible_y = get_most_possible_y(D)
        node.result_category = most_possible_y
        return node
    
    attr, attr_val = find_best_divider(D, A)
    
    divider = (attr, attr_val)
    DS = divide(D, divider)
    node.attr = attr
    node.attr_val = attr_val
    new_A = A
#     new_A.remove(attr)
    
    if DS[0] is None:
        node0 = Node()
        node0.result_category = get_most_possible_y(D)
        node.less_than_val_child = node0
    else:
        node.less_than_val_child = tree_generate(DS[0], new_A)
        
    if DS[1] is None:
        node1 = Node()
        node1.result_category = get_most_possible_y(D)
        node.bigger_than_val_child = node1
    else:
        node.bigger_than_val_child = tree_generate(DS[1], new_A)
    
    return node

其他函数:

def get_most_possible_y(D):
    w, x, y = D
    y = np.array(y)
    
    cnt_0 = np.sum(w * (y == 0))
    cnt_1 = np.sum(w * (y == 1))
    
    if cnt_0 > cnt_1:
        return 0
    else:
        return 1

def is_same_val_in_A(D, A):
    w, x, y = D
    for a in A:
        first_val = x[0][a]
        for xi in x:
            if xi[a] != first_val:
                return False
    
    return True

def is_same_y(D):
    w, x, y = D
    for yi in y:
        if yi != y[0]:
            return False
    return True

决策树训练函数:

def train_1(D):
    w, x, y = D
    n = len(x[0])
    A = list(range(n))
    node = tree_generate(D, A)
#     node = tree_stool_generate(D, A)
    return node

至此,决策树的代码就写完了,可以通过以下代码简单测试一下:

x, y = get_data()
w = [1/17 for _ in range(17)]
A = list(range(2))
D = (w, x, y)
node = tree_generate(D, A)

node.show()

就是对训练数据进行一次划分(权重均分),可以看到,生成的决策树和《机器学习》P90 图4.3 中的结果一致:
(这里没有对树进行画图展示,直接按照先序遍历循序打印了节点)
在这里插入图片描述

2.2 AdaBoost实现

参数T表示集成学习包含几个基学习器,也就是几个决策树。首先获取数据,然后进入for循环,循环T次,每一次将训练数据,训练标签,权重包含进D中,然后进行训练,得到学习器ht,然后计算一下ht的错误率et。这里主要要避免et=0的情况,防止一会除0。如果et>0.5则停止训练。然后将学习器ht存入学习器列表h_list,然后计算该学习器的权重alpha[t],表示该学习器最终的"话语权"。

然后就是adaboost的重点,更新权重,adaboost通过 “降低预测正确样本的权重,提高预测错误样本的权重” 来保证这些基学习器的多样性,更新权重的公式如下:
在这里插入图片描述Dt(x)表示数据x在第t轮训练的权重(对应代码中的变量w,w[i]表示第i条数据的权重,注意没有下标t,因为每次训练直接覆盖上次的权重了)。
Zt就是一个规范化因子,用于保证权重加和等于1(对应代码中的变量Z)。

def adaboost_1_train(T):
    alpha = []
    h_list = []
    
    x, y = get_data()
    N = len(y)
    w = [1/N for _ in range(N)]
    for t in range(T):
        print('w[', t, '] : \n', w, '\n')
        D = (w, x, y)
        ht = train_1(D)
        et = loss(ht, D)
        if et == 0:
            et = 0.00001
        if et > 0.5:
            break
        h_list.append(ht)
        alpha.append(0.5 * math.log((1-et)/et))
        
        Z = 0
        for i in range(N):
            predict_y = predict(ht, x[i])
            if predict_y == y[i]:
                Z += w[i] * math.exp(-alpha[t])
            else:
                Z += w[i] * math.exp(alpha[t])
            
        for i in range(N):
            w[i] = w[i] / Z
            predict_y = predict(ht, x[i])
            if predict_y == y[i]:
                w[i] *=  math.exp(-alpha[t])
            else:
                w[i] *=  math.exp(alpha[t])
        
    return h_list, alpha    

计算错误率:

def loss(h, D):
    w, x, y = D
    loss = 0
    for i in range(len(x)):
        predict_y = predict(h, x[i])
        if predict_y != y[i]:
            loss += w[i]
    
    return loss

集成学习器预测:

def adaboost_predict(model, x):
    h_list, alpha = model
    p_pos = 0
    p_neg = 0
    for i in range(len(h_list)):
        predict_y = predict(h_list[i], x)
        p_pos += predict_y * alpha[i]
        p_neg += (1-predict_y) * alpha[i]
        
    return p_pos > p_neg

决策树的分类边界的可视化:

def model_plot(h):
    x, y = get_data()
    train_label = y
    train_value = x
    x1 = [mapi[0] for mapi in train_value]
    x2 = [mapi[1] for mapi in train_value]
    x = np.c_[x1,x2]

    np_x = np.asarray(x)
    np_y = np.asarray(train_label)
    N, M = 100, 100

    x1_min, x2_min = np_x.min(axis=0)
    x1_max, x2_max = np_x.max(axis=0)

    x1_min -= 0.1
    x2_min -= 0.1
    x1_max += 0.1 
    x2_max += 0.1

    t1 = np.linspace(x1_min, x1_max, N)
    t2 = np.linspace(x2_min, x2_max, M)

    grid_x, grid_y = np.meshgrid(t1,t2)

    grid = np.stack([grid_x.flat, grid_y.flat], axis=1)
    y_fake = np.zeros((N*M,))

    y_predict = []
    for xi in grid:
        y_predict.append(predict(h, xi))

    cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0'])
    plt.pcolormesh(grid_x, grid_y, np.array(y_predict).reshape(grid_x.shape), cmap=cm_light)
    plt.scatter(x[:,0], x[:,1], s=30, c=train_label, marker='o')

    plt.show()

3. 结果

至此,已经完成了adaboost的全部实现,可以开始测试。
令基学习器的数量为11,进行训练,然后分别打印权重的变化过程,并绘制11个决策树的分类边界。

# 主程序
# (不剪枝决策树, 集成训练, 分开展示)
model = adaboost_1_train(11)
h_list, alpha = model

for h in h_list:
    model_plot(h)

观察结果:

w[ 0 ] :
[0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705]
w[ 1 ] :
[0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684]
w[ 2 ] :
[0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647]
w[ 3 ] :
[0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684]
w[ 4 ] :
[0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647]
w[ 5 ] :
[0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684]

w[ 6 ] : [0.0588235294117647, 0.0588235294117647,
0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647]

w[ 7 ] : [0.058823529411764684, 0.058823529411764684,
0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684]

w[ 8 ] : [0.0588235294117647, 0.0588235294117647,
0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647]

w[ 9 ] : [0.058823529411764684, 0.058823529411764684,
0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684, 0.058823529411764684]

w[ 10 ] : [0.0588235294117647, 0.0588235294117647,
0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647, 0.0588235294117647]

分类边界图像:
第一个:
在这里插入图片描述
(另外10个图像都一样)

可以看到,每轮训练的权重没有任何变化,并且训练出的决策树都是相同的。这种现象发生的原因就是,第一个基学习器训练后,其准确率已经达到100%,也就是说没有预测错误的样本,那么权重也就不会发生改变,进而后面10个基学习器的训练结果就和第一个一样了。这也验证了集成学习的特点,集成学习可以将多个弱学习器集成变成一个强学习器,但是如果基学习器就是强学习器(或者说在当前数据集上表现足够好),那么集成学习的效果就不显著了。

4.附加

为了展示出adaboost效果,这里将基学习器改成弱学习器,把不剪枝决策树改为决策树桩(只进行一次划分的决策树),重新实验。

决策树桩的实现:

def tree_stool_generate(D, A):
    node = Node()
    attr, attr_val = find_best_divider(D, A)
    node.attr = attr
    node.attr_val = attr_val
    
    DS = divide(D, (attr, attr_val))
    
    child_l = Node()
    child_l.result_category = get_most_possible_y(DS[0])
    child_b = Node()
    child_b.result_category = get_most_possible_y(DS[1])
    
    node.less_than_val_child = child_l
    node.bigger_than_val_child = child_b
    
    return node

决策树桩训练:

def train_2(D):
    w, x, y = D
    n = len(x[0])
    A = list(range(n))
#     node = tree_generate(D, A)
    node = tree_stool_generate(D, A)
    return node

决策树桩版的adaboost:

def adaboost_2_train(T):
    alpha = []
    h_list = []
    
    x, y = get_data()
    N = len(y)
    w = [1/N for _ in range(N)]
    for t in range(T):
        print('w[', t, '] : \n', w, '\n')
        D = (w, x, y)
        ht = train_2(D)
        et = loss(ht, D)
        if et == 0:
            et = 0.00001
        if et > 0.5:
            break
        h_list.append(ht)
        alpha.append(0.5 * math.log((1-et)/et))
        
        Z = 0
        for i in range(N):
            predict_y = predict(ht, x[i])
            if predict_y == y[i]:
                Z += w[i] * math.exp(-alpha[t])
            else:
                Z += w[i] * math.exp(alpha[t])
            
        for i in range(N):
            w[i] = w[i] / Z
            predict_y = predict(ht, x[i])
            if predict_y == y[i]:
                w[i] *=  math.exp(-alpha[t])
            else:
                w[i] *=  math.exp(alpha[t])
        
    return h_list, alpha    

然后,编写测试程序,进行测试和展示(同样是11个基学习器):

# 主程序
# (决策树桩, 集成训练, 分开展示)

model = adaboost_2_train(11)
h_list, alpha = model

for h in h_list:
    model_plot(h)
    
x, y = get_data()
x = np.array(x)
y = np.array(y)

for i in range(len(y)):
    plt.scatter(x[:, 0], x[:, 1], c=y, marker='o')
for h in h_list:
    if h.attr == 0:
        p_a = [h.attr_val, 0.01]
        p_b = [h.attr_val, 0.6]
    else:
        p_a = [0.1, h.attr_val]
        p_b = [0.8, h.attr_val]
    plt.plot([p_a[0], p_b[0]], [p_a[1], p_b[1]], 'g-')
plt.show()

运行结果:
权重变化过程:

w[ 0 ] :
[0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705, 0.058823529411764705]

w[ 1 ] : [0.03846153846153847, 0.03846153846153847,
0.03846153846153847, 0.03846153846153847, 0.03846153846153847, 0.03846153846153847, 0.03846153846153847, 0.03846153846153847, 0.03846153846153847, 0.12500000000000003, 0.03846153846153847, 0.03846153846153847, 0.12500000000000003, 0.12500000000000003, 0.12500000000000003, 0.03846153846153847, 0.03846153846153847]

w[ 2 ] : [0.062499999999999986, 0.062499999999999986,
0.062499999999999986, 0.062499999999999986, 0.062499999999999986, 0.062499999999999986, 0.062499999999999986, 0.062499999999999986, 0.02777777777777778, 0.09027777777777778, 0.02777777777777778, 0.02777777777777778, 0.09027777777777778, 0.09027777777777778, 0.09027777777777778, 0.02777777777777778, 0.02777777777777778]

w[ 3 ] : [0.042452830188679236, 0.042452830188679236,
0.042452830188679236, 0.042452830188679236, 0.042452830188679236, 0.042452830188679236, 0.042452830188679236, 0.042452830188679236, 0.05263157894736844, 0.06132075471698114, 0.01886792452830189, 0.01886792452830189, 0.1710526315789474, 0.1710526315789474, 0.06132075471698114, 0.05263157894736844, 0.05263157894736844]

w[ 4 ] : [0.025423728813559313, 0.025423728813559313,
0.025423728813559313, 0.025423728813559313, 0.025423728813559313, 0.025423728813559313, 0.1285714285714285, 0.025423728813559313, 0.031519476657746064, 0.1857142857142857, 0.011299435028248588, 0.011299435028248588, 0.1024382991376747, 0.1024382991376747, 0.1857142857142857, 0.031519476657746064, 0.031519476657746064]

w[ 5 ] : [0.018145161290322575, 0.018145161290322575,
0.018145161290322575, 0.018145161290322575, 0.018145161290322575, 0.018145161290322575, 0.09176267281105986, 0.018145161290322575, 0.052631578947368425, 0.13254608294930875, 0.008064516129032258, 0.008064516129032258, 0.17105263157894737, 0.17105263157894737, 0.13254608294930875, 0.052631578947368425, 0.052631578947368425]

w[ 6 ] : [0.04146919431279622, 0.04146919431279622,
0.04146919431279622, 0.04146919431279622, 0.04146919431279622, 0.04146919431279622, 0.20971563981042654, 0.04146919431279622, 0.0336854523863116, 0.0848326205574399, 0.005161480607580002, 0.005161480607580002, 0.1094777202555127, 0.1094777202555127, 0.0848326205574399, 0.0336854523863116, 0.0336854523863116]

w[ 7 ] : [0.030492583673288998, 0.030492583673288998,
0.030492583673288998, 0.030492583673288998, 0.030492583673288998, 0.030492583673288998, 0.15420535171920433, 0.030492583673288998, 0.05263157894736842, 0.06237800910865321, 0.003795272175233137, 0.003795272175233137, 0.17105263157894735, 0.17105263157894735, 0.06237800910865321, 0.05263157894736842, 0.05263157894736842]

w[ 8 ] : [0.0619860413620309, 0.0619860413620309,
0.02021956227836733, 0.02021956227836733, 0.02021956227836733, 0.02021956227836733, 0.10225321495060045, 0.02021956227836733, 0.03489987925383093, 0.12680348422154747, 0.007715118553244956, 0.007715118553244956, 0.11342460757495053, 0.11342460757495053, 0.12680348422154747, 0.10699071172635338, 0.03489987925383093]

w[ 9 ] : [0.03890423725611639, 0.03890423725611639,
0.0497159090909091, 0.0497159090909091, 0.0497159090909091, 0.0497159090909091, 0.25142045454545453, 0.0497159090909091, 0.021904176373691363, 0.07958554420736225, 0.0048422321551632825, 0.0048422321551632825, 0.07118857321449694, 0.07118857321449694, 0.07958554420736225, 0.06715047358633955, 0.021904176373691363]

w[ 10 ] : [0.026052036683798175, 0.026052036683798175,
0.033292021094723095, 0.033292021094723095, 0.033292021094723095, 0.033292021094723095, 0.16836250667902816, 0.033292021094723095, 0.043231476633221015, 0.053294079602197446, 0.0032425776376825907, 0.0032425776376825907, 0.1405022990579683, 0.1405022990579683, 0.053294079602197446, 0.1325324486176212, 0.043231476633221015]

11个决策树桩的分类边界(最后一个图是11个边界放在一张图中):
在这里插入图片描述

可以看到,使用决策树桩后,基学习器的训练结果发生了变化,同时权重也发生了变化。

(其中出现了全是绿色的结果,这种结果表明决策树按照某个值划分数据集,然后形成左右节点后,认为左右节点都是正例。这种情况就像是,密度>0.5的是好瓜,密度<0.5的也是好瓜。其原因就是,我在判断叶子节点的类别结果使用的算法是,看哪个类的带权占比大,而如果正例的权重都比较大,而反例都比较小的时候,就会发生这个现象)

然后,对集成学习器进行集成测试:

# 主程序
# (决策树桩, 集成展示)

x, y = get_data()
train_label = y
train_value = x
x1 = [mapi[0] for mapi in train_value]
x2 = [mapi[1] for mapi in train_value]
x = np.c_[x1,x2]

np_x = np.asarray(x)
np_y = np.asarray(train_label)
N, M = 100, 100

x1_min, x2_min = np_x.min(axis=0)
x1_max, x2_max = np_x.max(axis=0)

x1_min -= 0.1
x2_min -= 0.1
x1_max += 0.1 
x2_max += 0.1

t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)

grid_x, grid_y = np.meshgrid(t1,t2)

grid = np.stack([grid_x.flat, grid_y.flat], axis=1)
y_fake = np.zeros((N*M,))

y_predict = []
for xi in grid:
    y_predict.append(adaboost_predict(model, xi))

cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0'])
plt.pcolormesh(grid_x, grid_y, np.array(y_predict).reshape(grid_x.shape), cmap=cm_light)
plt.scatter(x[:,0], x[:,1], s=30, c=train_label, marker='o')

plt.show()

运行结果:
在这里插入图片描述
可以看到,对训练数据的预测准确率100%,与书中图8.4结果相同。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-08-19 19:04:57  更:2022-08-19 19:09:06 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 23:00:55-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码