| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 神经网络的训练函数在一个神经网络中 -> 正文阅读 |
|
[人工智能]神经网络的训练函数在一个神经网络中 |
想要学习人工神经网络,需要什么样的基础知识?人工神经网络理论百度网盘下载:链接:?提取码:rxlc简介:本书是人工神经网络理论的入门书籍。全书共分十章。 第一章主要阐述人工神经网络理论的产生及发展历史、理论特点和研究方向;第二章至第九章介绍人工神经网络理论中比较成熟且常用的几种主要网络结构、算法和应用途径;第十章用较多篇幅介绍了人工神经网络理论在各个领域的应用实例。 。 神经网络(深度学习)的几个基础概念从广义上说深度学习的网络结构也是多层神经网络的一种爱发猫 www.aifamao.com。传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。 而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。 具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。 输入层-卷积层-降维层-卷积层-降维层--....--隐藏层-输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是信号->特征->值。 特征是由网络自己选择。 简述神经网络、机器学习、深度学习之间的关系与应用。神经网络、深度学习、机器学习是什么?有什么区别和联系?深度学习是由深层神经网络+机器学习造出来的词。深度最早出现在deepbeliefnetwork(深度(层)置信网络)。其出现使得沉寂多年的神经网络又焕发了青春。 GPU使得深层网络随机初始化训练成为可能。resnet的出现打破了层次限制的魔咒,使得训练更深层次的神经网络成为可能。深度学习是神经网络的唯一发展和延续。 在现在的语言环境下,深度学习泛指神经网络,神经网络泛指深度学习。在当前的语境下没有区别。定义生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。 人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。 作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。 人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。 因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。 神经网络中学习率、批处理样本数量、迭代次数有什么意义和影响?学习率是指每次训练过程中(迭代)变量改变(更新)的比率,例如x(t+1)=x(t)-a*delta其中a可以看出学习率,一般在0-1之间,相当于步长,而delta相当于方向。 批处理样本数量,标准的BP是单样本学习的方法,例如图片识别,第一个图是猫,然后输入图像,网络学习一次(变量更新一次),学习到图片的特征,然后再输入第二个图片狗,在前面的基础上再学习。 而批训练,就是说两个图片一起输入后,计算两个样本学习的平均的误差(Loss),从整体上来学习整个训练样本集合,这样的学习对于大样本数据更加有效率。 迭代次数就是学习的次数了,每次迭代就是向最优点前进的一小步,神经网络要学习到样本的特征,那就要一步一步地走,走了很多步才能到达符合精度地地点,所以需要学习很多次。 神经网络的学习方式neural network theory Simon.Haykin(神经网络原理 Simon.Haykin 原书第2版)有没有课后习题的答案?怒求神经网络是计算智能和机器学习研究的最活跃的分支之一。本书全面系统地介绍神经网络的基本概念,系统理论和实际应用。本书包含四个组成部分:导论,监督学习,无监督学习,神经网络动力学模型。 导论部分介绍神经元模型、神经网络结构和机器学习的基本概念和理论。监督学习讨论感知机学习规则,有监督的Hebb学习,学习算法,反向传播算法及其变形,RBF网络,正规化网络、支持向量机以及委员会机器。 无监督学习包括主分量分析,自组织特征映射模型的竞争学习形式,无监督学习的信息理论,植根于统计力学的随机学习机器,最后是与动态规划相关的增强式学习。 神经网络动力学模型研究由短期记忆和分层前馈网络构成的动态系统,反馈非线性动态系统性的稳定性和联想记忆,以及另一类非线性动态驱动的递归网络系统。 本书注重对数学分析方法和性能优化的读者讨论,强调神经网络在模式识别,信号处理和控制系统等实际工程问题中的应用。书中包含大量例题和习题,并配有13个基于MATLAB软件的计算机实验程序。 本书适合作研究生或大学高年级学生的教材,也可作希望深入学习神经网络的科技人员的参考书。 ? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/25 22:41:42- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |