| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 神经网络模型的实际案例神经网络模型应用实例 -> 正文阅读 |
|
[人工智能]神经网络模型的实际案例神经网络模型应用实例 |
深度学习的职业发展方向有哪些?当前,人工智能发展借助深度学习技术突破得到了全面关注和助力推动,各国政府高度重视、资本热潮仍在加码,各界对其成为发展热点也达成了共识。 本文旨在分析深度学习技术现状,研判深度学习发展趋势,并针对我国的技术水平提出发展建议。一、深度学习技术现状深度学习是本轮人工智能爆发的关键技术。 人工智能技术在计算机视觉和自然语言处理等领域取得的突破性进展,使得人工智能迎来新一轮爆发式发展。而深度学习是实现这些突破性进展的关键技术。 其中,基于深度卷积网络的图像分类技术已超过人眼的准确率,基于深度神经网络的语音识别技术已达到95%的准确率,基于深度神经网络的机器翻译技术已接近人类的平均翻译水平。 准确率的大幅提升使得计算机视觉和自然语言处理进入产业化阶段,带来新产业的兴起。深度学习是大数据时代的算法利器,成为近几年的研究热点。和传统的机器学习算法相比,深度学习技术有着两方面的优势。 一是深度学习技术可随着数据规模的增加不断提升其性能,而传统机器学习算法难以利用海量数据持续提升其性能。 二是深度学习技术可以从数据中直接提取特征,削减了对每一个问题设计特征提取器的工作,而传统机器学习算法需要人工提取特征。 因此,深度学习成为大数据时代的热点技术,学术界和产业界都对深度学习展开了大量的研究和实践工作。深度学习各类模型全面赋能基础应用。卷积神经网络和循环神经网络是两类获得广泛应用的深度神经网络模型。 计算机视觉和自然语言处理是人工智能两大基础应用。卷积神经网络广泛应用于计算机视觉领域,在图像分类、目标检测、语义分割等任务上的表现大大超越传统方法。 循环神经网络适合解决序列信息相关问题,已广泛应用于自然语言处理领域,如语音识别、机器翻译、对话系统等。深度学习技术仍不完美,有待于进一步提升。 一是深度神经网络的模型复杂度高,巨量的参数导致模型尺寸大,难以部署到移动终端设备。二是模型训练所需的数据量大,而训练数据样本获取、标注成本高,有些场景样本难以获取。 三是应用门槛高,算法建模及调参过程复杂繁琐、算法设计周期长、系统实施维护困难。四是缺乏因果推理能力,图灵奖得主、贝叶斯网络之父JudeaPearl指出当前的深度学习不过只是“曲线拟合”。 五是存在可解释性问题,由于内部的参数共享和复杂的特征抽取与组合,很难解释模型到底学习到了什么,但出于安全性考虑以及伦理和法律的需要,算法的可解释性又是十分必要的。因此,深度学习仍需解决以上问题。 二、深度学习发展趋势深度神经网络呈现层数越来越深,结构越来越复杂的发展趋势。为了不断提升深度神经网络的性能,业界从网络深度和网络结构两方面持续进行探索。 神经网络的层数已扩展到上百层甚至上千层,随着网络层数的不断加深,其学习效果也越来越好,2015年微软提出的ResNet以152层的网络深度在图像分类任务上准确率首次超过人眼。 新的网络设计结构不断被提出,使得神经网络的结构越来越复杂。 如:2014年谷歌提出了Inception网络结构、2015年微软提出了残差网络结构、2016年黄高等人提出了密集连接网络结构,这些网络结构设计不断提升了深度神经网络的性能。 深度神经网络节点功能不断丰富。为了克服目前神经网络存在的局限性,业界探索并提出了新型神经网络节点,使得神经网络的功能越来越丰富。 2017年,杰弗里辛顿提出了胶囊网络的概念,采用胶囊作为网络节点,理论上更接近人脑的行为,旨在克服卷积神经网络没有空间分层和推理能力等局限性。 2018年,DeepMind、谷歌大脑、MIT的学者联合提出了图网络的概念,定义了一类新的模块,具有关系归纳偏置功能,旨在赋予深度学习因果推理的能力。深度神经网络工程化应用技术不断深化。 深度神经网络模型大都具有上亿的参数量和数百兆的占用空间,运算量大,难以部署到智能手机、摄像头和可穿戴设备等性能和资源受限的终端类设备。 为了解决这个问题,业界采用模型压缩技术降低模型参数量和尺寸,减少运算量。目前采用的模型压缩方法包括对已训练好的模型做修剪(如剪枝、权值共享和量化等)和设计更精细的模型(如MobileNet等)两类。 深度学习算法建模及调参过程繁琐,应用门槛高。为了降低深度学习的应用门槛,业界提出了自动化机器学习(AutoML)技术,可实现深度神经网络的自动化设计,简化使用流程。 深度学习与多种机器学习技术不断融合发展。 深度学习与强化学习融合发展诞生的深度强化学习技术,结合了深度学习的感知能力和强化学习的决策能力,克服了强化学习只适用于状态为离散且低维的缺陷,可直接从高维原始数据学习控制策略。 为了降低深度神经网络模型训练所需的数据量,业界引入了迁移学习的思想,从而诞生了深度迁移学习技术。迁移学习是指利用数据、任务或模型之间的相似性,将在旧领域学习过的模型,应用于新领域的一种学习过程。 通过将训练好的模型迁移到类似场景,实现只需少量的训练数据就可以达到较好的效果。三、未来发展建议加强图网络、深度强化学习以及生成式对抗网络等前沿技术研究。 由于我国在深度学习领域缺乏重大原创性研究成果,基础理论研究贡献不足,如胶囊网络、图网络等创新性、原创性概念是由美国专家提出,我国研究贡献不足。 在深度强化学习方面,目前最新的研究成果大都是由DeepMind和OpenAI等国外公司的研究人员提出,我国尚没有突破性研究成果。 近几年的研究热点生成式对抗网络(GAN)是由美国的研究人员Goodfellow提出,并且谷歌、facebook、twitter和苹果等公司纷纷提出了各种改进和应用模型,有力推动了GAN技术的发展,而我国在这方面取得的研究成果较少。 因此,应鼓励科研院所及企业加强深度神经网络与因果推理模型结合、生成式对抗网络以及深度强化学习等前沿技术的研究,提出更多原创性研究成果,增强全球学术研究影响力。 加快自动化机器学习、模型压缩等深度学习应用技术研究。依托国内的市场优势和企业的成长优势,针对具有我国特色的个性化应用需求,加快对深度学习应用技术的研究。 加强对自动化机器学习、模型压缩等技术的研究,加快深度学习的工程化落地应用。加强深度学习在计算机视觉领域应用研究,进一步提升目标识别等视觉任务的准确率,以及在实际应用场景中的性能。 加强深度学习在自然语言处理领域的应用研究,提出性能更优的算法模型,提升机器翻译、对话系统等应用的性能。 来源:产业智能官END更多精彩内容请登录官方网站往期精选▼1.饮鹿网2018-2019年中国人工智能产业创新百强榜单发布!2.饮鹿网2018-2019年中国人工智能产业Top20投资机构榜单发布! 3.饮鹿网2018-2019年中国大数据产业创新百强榜单发布!4.饮鹿网2018-2019年中国大数据产业Top20投资机构榜单发布! 5.饮鹿网2018-2019年中国物联网产业创新百强榜单发布!6.饮鹿网2018-2019年中国5G与物联网产业TOP20投资机构榜单发布! 7.饮鹿网2018-2019年中国集成电路产业创新百强榜单发布!8.饮鹿网2018-2019年中国集成电路产业Top20投资机构榜单发布! 9.饮鹿网2018-2019年中国企业服务产业创新百强榜单发布!10.饮鹿网2018-2019年中国企业服务产业TOP20投资机构榜单发布! 谷歌人工智能写作项目:神经网络伪原创 如何把电脑训练好的神经网络移植到app上有两个思路写作猫。 一个online方式:移动端做初步预处理,把数据传到服务器执行深度学习模型,现在很多APP都是这个思路,优点是这个方式部署相对简单,现成的框架(caffe,theano,mxnet,Torch)做下封装就可以直接拿来用,服务器性能大,能够处理比较大的模型,缺点是必须联网。 另外一种是offline方式:根据硬件的性能,部署适当的模型。优点是可以离线执行。 缺点也是明显的,1)受限硬件,可能要运行个阉割版的模型,对模型精度会有一定的影响;2)要移植现成框架到移动平台比较麻烦,各种依赖的剥离很痛苦,mxnet有个Androidapp的例子(Leliana/WhatsThis·GitHub),Torch7也个Android版本soumith/torch-android·GitHub,可以参考下,当然如果编程能力强的话,自己写个网络前传的代码。 请简述一下神经网络的PDB模型 5。 资料1.人工神经网络理论基础包括:(1)PDP(ParallelDistribatedProcessing)模式(2)容限理论(3)网络拓扑(4)混沌理论1、PDP模式PDP模式是一种认知心理的平行分布式模式。 认知是信息处理过程,并且是知觉、注意、记忆、学习、表象、思维、概念形式、问题求解、语言、情绪、个性差异等等有机联系的处理过程。PDP模式是一种接近人类思维推论的模式。 人脑中知识的表达是采用分布式的表达结构,人脑的控制是实行分布式的控制方式。相互作用、相互限制是PDP模式的基本思想,平行分布是PDP模式的基本构架。 PDP模式的实施,需要一种合理的表示方法,其中一种表示方法便是人工神经网络表示法。即采用类似于大脑神经网络的体系结构,在这种基本体系结构下,使人工神经网络经过学习训练,能适应多种知识体系。 参考:?boardid=7&id=924&star=1&page=2资料2.神经网络模型信息加工模型有助于理论家把其理论假设进一步细致化、具体化。 然而正如我们在第一节所讨论过的,遵循联结主义传统的学者对比提出了反对意见,认为这一模型假设认知过程是继时性流动,而事实并非总是如此,(参见Rumelhart,Hinton,和McClelland,1986),至少有一些认知过程更可能是同时发生的。 比如说司机开车时可同时与人讲话。一种用得越来越多的模型是神经网络模型(或称并行分布模型)。这类模型认为不同的认知过程可以同时发生,这一假设与人们的主观感觉相一致:许多东西同时出现在脑海中。 这一假设还与我们已知的大脑神经的操作相一致。神经网络模型假设有一系列相互连接的加工单元,而且这些单元的激活水平是不同的。根据不同的传播规则,激活从一个单元传播到与之相连的其它单元。参考:3.。 卷积神经网络cnn究竟是怎样一步一步工作的用一个卷积核滑动图片来提取某种特征(比如某个方向的边),然后激活函数用ReLU来压制梯度弥散。 对得到的结果用另一个卷积核继续提取+reLU,然后池化(保留区域最大或者用区域平均来替换整个局部区域的值,保证平移不变性和一定程度上对过拟合的压制)之后“深度”的话,就会需要对池化后的结果继续用不同的卷积核进行“卷积+relu”再池化的工作。 最后得到的实质是一个图片的深度特征,然后实际分类需要另外加一层,一般是softmax。 (也就是说如果对一个现成的已经训练完毕的卷积神经网络模型,只保留除了最后一层之外的部分,然后输入训练图片,把网络的输出重新送入一个多类的SVM再训练,最后也能得到差不多的结果,取决于svm的参数。) 求BP神经网络训练模型 110不知道他是用什么做的,如果是matlab可能是用GUI工具做的。CSDN下载的积分通过评论可以返还,不用担心分数问题。我也传一个C++的类。 BP(BackPropagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。 BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。 BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。 神经网络Hopfield模型一、Hopfield模型概述1982年,美国加州工学院J.Hopfield发表一篇对人工神经网络研究颇有影响的论文。他提出了一种具有相互连接的反馈型人工神经网络模型——Hopfield人工神经网络。 Hopfield人工神经网络是一种反馈网络(RecurrentNetwork),又称自联想记忆网络。 其目的是为了设计一个网络,存储一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到所存储的某个平衡点上。 Hopfield网络是单层对称全反馈网络,根据其激活函数的选取不同,可分为离散型Hopfield网络(DiscreteHopfieldNeuralNetwork,简称DHNN)和连续型Hopfield网络(ContinueHopfieldNeuralNetwork,简称CHNN)。 离散型Hopfield网络的激活函数为二值型阶跃函数,主要用于联想记忆、模式分类、模式识别。这个软件为离散型Hopfield网络的设计、应用。 二、Hopfield模型原理离散型Hopfield网络的设计目的是使任意输入矢量经过网络循环最终收敛到网络所记忆的某个样本上。 正交化的权值设计这一方法的基本思想和出发点是为了满足下面4个要求:1)保证系统在异步工作时的稳定性,即它的权值是对称的,满足wij=wji,i,j=1,2…,N;2)保证所有要求记忆的稳定平衡点都能收敛到自己;3)使伪稳定点的数目尽可能地少;4)使稳定点的吸引力尽可能地大。 正交化权值的计算公式推导如下:1)已知有P个需要存储的稳定平衡点x1,x2…,xP-1,xP,xp∈RN,计算N×(P-1)阶矩阵A∈RN×(P-1):A=(x1-xPx2-xP…xP-1-xP)T。 2)对A做奇异值分解A=USVT,U=(u1u2…uN),V=(υ1υ2…υP-1),中国矿产资源评价新技术与评价新模型Σ=diαg(λ1,λ2,…,λK),O为零矩阵。 K维空间为N维空间的子空间,它由K个独立的基组成:K=rαnk(A),设{u1u2…uK}为A的正交基,而{uK+1uK+2…uN}为N维空间的补充正交基。下面利用U矩阵来设计权值。 3)构造中国矿产资源评价新技术与评价新模型总的连接权矩阵为:Wt=Wp-T·Wm,其中,T为大于-1的参数,缺省值为10。 Wp和Wm均满足对称条件,即(wp)ij=(wp)ji,(wm)ij=(wm)ji,因而Wt中分量也满足对称条件。这就保证了系统在异步时能够收敛并且不会出现极限环。 4)网络的偏差构造为bt=xP-Wt·xP。下面推导记忆样本能够收敛到自己的有效性。 (1)对于输入样本中的任意目标矢量xp,p=1,2,…,P,因为(xp-xP)是A中的一个矢量,它属于A的秩所定义的K个基空间的矢量,所以必存在系数α1,α2,…,αK,使xp-xP=α1u1+α2u2+…+αKuK,即xp=α1u1+α2u2+…+αKuK+xP,对于U中任意一个ui,有中国矿产资源评价新技术与评价新模型由正交性质可知,上式中当i=j,;当i≠j,;对于输入模式xi,其网络输出为yi=sgn(Wtxi+bt)=sgn(Wpxi-T·Wmxi+xP-WpxP+T·WmxP)=sgn[Wp(xi-xP)-T·Wm(xi-xP)+xP]=sgn[(Wp-T·Wm)(xi-xP)+xP]=sgn[Wt(xi-xP)+xP]=sgn[(xi-xP)+xP]=xi。 (2)对于输入模式xP,其网络输出为yP=sgn(WtxP+bt)=sgn(WtxP+xP-WtxP)=sgn(xP)=xP。 (3)如果输入一个不是记忆样本的x,网络输出为y=sgn(Wtx+bt)=sgn[(Wp-T·Wm)(x-xP)+xP]=sgn[Wt(x-xP)+xP]。 因为x不是已学习过的记忆样本,x-xP不是A中的矢量,则必然有Wt(x-xP)≠x-xP,并且再设计过程中可以通过调节Wt=Wp-T·Wm中的参数T的大小来控制(x-xP)与xP的符号,以保证输入矢量x与记忆样本之间存在足够的大小余额,从而使sgn(Wtx+bt)≠x,使x不能收敛到自身。 用输入模式给出一组目标平衡点,函数HopfieldDesign()可以设计出Hopfield网络的权值和偏差,保证网络对给定的目标矢量能收敛到稳定的平衡点。 设计好网络后,可以应用函数HopfieldSimu(),对输入矢量进行分类,这些输入矢量将趋近目标平衡点,最终找到他们的目标矢量,作为对输入矢量进行分类。 三、总体算法1.Hopfield网络权值W[N][N]、偏差b[N]设计总体算法应用正交化权值设计方法,设计Hopfield网络;根据给定的目标矢量设计产生权值W[N][N],偏差b[N];使Hopfield网络的稳定输出矢量与给定的目标矢量一致。 1)输入P个输入模式X=(x[1],x[2],…,x[P-1],x[P])输入参数,包括T、h;2)由X[N][P]构造A[N][P-1]=(x[1]-x[P],x[2]-x[P],…,x[P-1]-x[P]);3)对A[N][P-1]作奇异值分解A=USVT;4)求A[N][P-1]的秩rank;5)由U=(u[1],u[2],…,u[K])构造Wp[N][N];6)由U=(u[K+1],…,u[N])构造Wm[N][N];7)构造Wt[N][N]=Wp[N][N]-T*Wm[N][N];8)构造bt[N]=X[N][P]-Wt[N][N]*X[N][P];9)构造W[N][N](9~13),构造W1[N][N]=h*Wt[N][N];10)求W1[N][N]的特征值矩阵Val[N][N](对角线元素为特征值,其余为0),特征向量矩阵Vec[N][N];11)求Eval[N][N]=diag{exp[diag(Val)]}[N][N];12)求Vec[N][N]的逆Invec[N][N];13)构造W[N][N]=Vec[N][N]*Eval[N][N]*Invec[N][N];14)构造b[N],(14~15),C1=exp(h)-1,C2=-(exp(-T*h)-1)/T;15)构造中国矿产资源评价新技术与评价新模型Uˊ——U的转置;16)输出W[N][N],b[N];17)结束。 2.Hopfield网络预测应用总体算法Hopfield网络由一层N个斜坡函数神经元组成。应用正交化权值设计方法,设计Hopfield网络。根据给定的目标矢量设计产生权值W[N][N],偏差b[N]。 初始输出为X[N][P],计算X[N][P]=f(W[N][N]*X[N][P]+b[N]),进行T次迭代,返回最终输出X[N][P],可以看作初始输出的分类。 3.斜坡函数中国矿产资源评价新技术与评价新模型输出范围[-1,1]。四、数据流图Hopfield网数据流图见附图3。 五、调用函数说明1.一般实矩阵奇异值分解(1)功能用豪斯荷尔德(Householder)变换及变形QR算法对一般实矩阵进行奇异值分解。 (2)方法说明设A为m×n的实矩阵,则存在一个m×m的列正交矩阵U和n×n的列正交矩阵V,使中国矿产资源评价新技术与评价新模型成立。 其中Σ=diag(σ0,σ1,…σp)p?min(m,n)-1,且σ0≥σ1≥…≥σp>0,上式称为实矩阵A的奇异值分解式,σi(i=0,1,…,p)称为A的奇异值。 奇异值分解分两大步:第一步:用豪斯荷尔德变换将A约化为双对角线矩阵。 即中国矿产资源评价新技术与评价新模型其中中国矿产资源评价新技术与评价新模型中的每一个变换Uj(j=0,1,…,k-1)将A中的第j列主对角线以下的元素变为0,而中的每一个变换Vj(j=0,1,…,l-1)将A中的第j行主对角线紧邻的右次对角线元素右边的元素变为0。 ]]j具有如下形式:中国矿产资源评价新技术与评价新模型其中ρ为一个比例因子,以避免计算过程中的溢出现象与误差的累积,Vj是一个列向量。 即Vj=(υ0,υ1,…,υn-1),则中国矿产资源评价新技术与评价新模型其中中国矿产资源评价新技术与评价新模型第二步:用变形的QR算法进行迭代,计算所有的奇异值。 即:用一系列的平面旋转变换对双对角线矩阵B逐步变换成对角矩阵。 在每一次的迭代中,用变换中国矿产资源评价新技术与评价新模型其中变换将B中第j列主对角线下的一个非0元素变为0,同时在第j行的次对角线元素的右边出现一个非0元素;而变换Vj,j+1将第j-1行的次对角线元素右边的一个0元素变为0,同时在第j列的主对角线元素的下方出现一个非0元素。 由此可知,经过一次迭代(j=0,1,…,p-1)后,B′仍为双对角线矩阵。但随着迭代的进行。最后收敛为对角矩阵,其对角线上的元素为奇异值。 在每次迭代时,经过初始化变换V01后,将在第0列的主对角线下方出现一个非0元素。在变换V01中,选择位移植u的计算公式如下:中国矿产资源评价新技术与评价新模型最后还需要对奇异值按非递增次序进行排列。 在上述变换过程中,若对于某个次对角线元素ej满足|ej|?ε(|sj+1|+|sj|)则可以认为ej为0。若对角线元素sj满足|sj|?ε(|ej-1|+|ej|)则可以认为sj为0(即为0奇异值)。 其中ε为给定的精度要求。 (3)调用说明intbmuav(double*a,intm,intn,double*u,double*v,doubleeps,intka),本函数返回一个整型标志值,若返回的标志值小于0,则表示出现了迭代60次还未求得某个奇异值的情况。 此时,矩阵的分解式为UAVT;若返回的标志值大于0,则表示正常返回。形参说明:a——指向双精度实型数组的指针,体积为m×n。 存放m×n的实矩阵A;返回时,其对角线给出奇异值(以非递增次序排列),其余元素为0;m——整型变量,实矩阵A的行数;n——整型变量,实矩阵A的列数;u——指向双精度实型数组的指针,体积为m×m。 返回时存放左奇异向量U;υ——指向双精度实型数组的指针,体积为n×n。返回时存放右奇异向量VT;esp——双精度实型变量,给定的精度要求;ka——整型变量,其值为max(m,n)+1。 2.求实对称矩阵特征值和特征向量的雅可比过关法(1)功能用雅可比(Jacobi)方法求实对称矩阵的全部特征值与相应的特征向量。(2)方法说明雅可比方法的基本思想如下。设n阶矩阵A为对称矩阵。 在n阶对称矩阵A的非对角线元素中选取一个绝对值最大的元素,设为apq。 利用平面旋转变换矩阵R0(p,q,θ)对A进行正交相似变换:A1=R0(p,q,θ)TA,其中R0(p,q,θ)的元素为rpp=cosθ,rqq=cosθ,rpq=sinθ,rqp=sinθ,rij=0,i,j≠p,q。 如果按下式确定角度θ,中国矿产资源评价新技术与评价新模型则对称矩阵A经上述变换后,其非对角线元素的平方和将减少,对角线元素的平方和增加,而矩阵中所有元素的平方和保持不变。 由此可知,对称矩阵A每次经过一次变换,其非对角线元素的平方和“向零接近一步”。因此,只要反复进行上述变换,就可以逐步将矩阵A变为对角矩阵。 对角矩阵中对角线上的元素λ0,λ1,…,λn-1即为特征值,而每一步中的平面旋转矩阵的乘积的第i列(i=0,1,…,n-1)即为与λi相应的特征向量。 综上所述,用雅可比方法求n阶对称矩阵A的特征值及相应特征向量的步骤如下:1)令S=In(In为单位矩阵);2)在A中选取非对角线元素中绝对值最大者,设为apq;3)若|apq|<ε,则迭代过程结束。 此时对角线元素aii(i=0,1,…,n-1)即为特征值λi,矩阵S的第i列为与λi相应的特征向量。否则,继续下一步;4)计算平面旋转矩阵的元素及其变换后的矩阵A1的元素。 其计算公式如下中国矿产资源评价新技术与评价新模型5)S=S·R(p,q,θ),转(2)。 在选取非对角线上的绝对值最大的元素时用如下方法:首先计算实对称矩阵A的非对角线元素的平方和的平方根中国矿产资源评价新技术与评价新模型然后设置关口υ1=υ0/n,在非对角线元素中按行扫描选取第一个绝对值大于或等于υ1的元素αpq进行平面旋转变换,直到所有非对角线元素的绝对值均小于υ1为止。 再设关口υ2=υ1/n,重复这个过程。以此类推,这个过程一直作用到对于某个υk<ε为止。(3)调用说明voidcjcbj(double*a,intn,double*v,doubleeps)。 形参说明:a——指向双精度实型数组的指针,体积为n×n,存放n阶实对称矩阵A;返回时,其对角线存放n个特征值;n——整型变量,实矩阵A的阶数;υ——指向双精度实型数组的指针,体积为n×n,返回特征向量,其中第i列为与λi(即返回的αii,i=0,1,……,n-1)对应的特征向量;esp——双精度实型变量。 给定的精度要求。3.矩阵求逆(1)功能用全选主元高斯-约当(Gauss-Jordan)消去法求n阶实矩阵A的逆矩阵。 (2)方法说明高斯-约当法(全选主元)求逆的步骤如下:首先,对于k从0到n-1做如下几步:1)从第k行、第k列开始的右下角子阵中选取绝对值最大的元素,并记住此元素所在的行号和列号,再通过行交换和列交换将它交换到主元素位置上,这一步称为全选主元;2);3),i,j=0,1,…,n-1(i,j≠k);4)αij-,i,j=0,1,…,n-1(i,j≠k);5)-,i,j=0,1,…,n-1(i≠k);最后,根据在全选主元过程中所记录的行、列交换的信息进行恢复,恢复原则如下:在全选主元过程中,先交换的行、列后进行恢复;原来的行(列)交换用列(行)交换来恢复。 图8-4东昆仑—柴北缘地区基于HOPFIELD模型的铜矿分类结果图(3)调用说明intbrinv(double*a,intn)。本函数返回一个整型标志位。 若返回的标志位为0,则表示矩阵A奇异,还输出信息“err**notinv”;若返回的标志位不为0,则表示正常返回。形参说明:a——指向双精度实型数组的指针,体积为n×n。 存放原矩阵A;返回时,存放其逆矩阵A-1;n——整型变量,矩阵的阶数。六、实例实例:柴北缘—东昆仑地区铜矿分类预测。 选取8种因素,分别是重砂异常存在标志、水化异常存在标志、化探异常峰值、地质图熵值、Ms存在标志、Gs存在标志、Shdadlie到区的距离、构造线线密度。构置原始变量,并根据原始数据构造预测模型。 HOPFIELD模型参数设置:训练模式维数8,预测样本个数774,参数个数8,迭代次数330。结果分44类(图8-4,表8-5)。表8-5原始数据表及分类结果(部分)续表。 ? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/25 22:36:28- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |