IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【研究生工作周报】 -> 正文阅读

[人工智能]【研究生工作周报】

学习目标:

  • CycleGAN论文
  • Cycle GAN项目 Trace code
  • 《深度学习》第九章卷积网络

学习内容:

  1. 关于PatchGAN的理解
  2. 卷积层总结
  3. ReLU激活函数总结
  4. CycleGAN代码训练过程Trace

学习时间:

  • 8.28~9.3

学习产出:

马尔科夫判别器PatchGAN

马尔可夫判别器的区别:

  1. 基于CNN的分类模型有很多种,很多网络都是在最后引入了一个全连接层,然后将判别的结果输出。
  2. 马尔可夫判别器是由卷积层构成,最后输出一个n*n的矩阵,最后取输出矩阵的均值作为True/False的输出。
  3. 事实上,输出矩阵中的每个数据代表着原图中一个感受野,对应了原图的一片(patch),这样的GAN称PatchGAN.

感受域计算
每一层感受域的计算公式为:
input_size = (output_size-1)*k_stride+k_size
1.感受域:输出节点(输出网络中的每个节点)对输入网络的感受野的范围(可以从输出网络大小反推感受野的大小)
2.input_size:为输出结点感受域的大小
3.k_stride:卷积核的移动步长
4.k_size:输入输出之间卷积核的大小h’j
以CycleGAN代码中的马尔可夫判别器为例:
在这里插入图片描述

  1. last_conv输出(k_stride=1),假设其中一个节点,即output_size=1,计算得到CK4的大小(input_size)为4;
  2. 同理,假设CK4_size = 4,则CK3_size = (4-1)*2+4=10
  3. 同理,CK2_size = (10-1)*2+4=22;
  4. 同理,CK1_size = (22-1)*2+4=46;
    同理,input的感受域大小为94

前人关于patchgan对作者的提问:
在这里插入图片描述

卷积神经网络总结

卷积有一维卷积、二维卷积、三维卷积。一般情况下,卷积核在几个维度上滑动,就是几维卷积。比如我们的cyclegan的网络在图片上的卷积,就是二维卷积。

二维卷积:nn.Conv2d()

nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1,
bias=True, padding_mode=‘zeros’)

这个函数的功能是对多个二维信号进行二维卷积,主要参数如下:

in_channels:输入通道数
out_channels:输出通道数,等价于卷积核个数
kernel_size:卷积核尺寸
stride:步长
padding:填充宽度,主要是为了调整输出的特征图大小,一般把 padding 设置合适的值后,保持输入和输出的图像尺寸不变。
dilation:空洞卷积大小,默认为 1,这时是标准卷积,常用于图像分割任务中,主要是为了提升感受野
groups:分组卷积设置,主要是为了模型的轻量化,如在 ShuffleNet、MobileNet、SqueezeNet 中用到
bias:偏置

这里不考虑空洞卷积,假设输入图片大小为 I × I I×I I×I ,卷积核大小为 k × k k×k k×k ,stride 为 s s s ,padding 的像素数为 p p p ,图片经过卷积之后的尺寸 O O O 如下:
O = I ? k + 2 ? p s + 1 O = \frac{I-k + 2*p}{s} + 1 O=sI?k+2?p?+1

完整版卷积公式:
假设输入图片大小为 I × I I×I I×I ,卷积核大小为 k × k k×k k×k ,stride 为 s s s ,padding 的像素数为 p p p ,空洞卷积dilation 为 d d d,图片经过卷积之后的尺寸 O O O 如下:
O = I ? d ? ( k ? 1 ) + 2 ? p ? 1 s + 1 O = \frac{I-d*(k-1) + 2*p-1}{s} + 1 O=sI?d?(k?1)+2?p?1?+1

转置卷积:nn.ConvTranspose()

转置卷积又称为反卷积 (Deconvolution) 和部分跨越卷积 (Fractionally strided Convolution),用于对图像进行上采样。可以根据卷积核大小和输出的大小,恢复卷积前的图像尺寸,而不是恢复原始值

这里不考虑空洞卷积,假设输入图片大小为 I × I I×I I×I ,卷积核大小为 k × k k×k k×k ,stride 为 s s s ,padding 的像素数为 p p p ,图片经过卷积之后的尺寸 O O O 如下,刚好和普通卷积的计算是相反的:
O = ( I ? 1 ) × s + k ? 2 p O = (I - 1) × s + k - 2p O=(I?1)×s+k?2p

完整版简化版转置卷积尺寸计算
O = ( I ? 1 ) × s + d ? ( k ? 1 ) ? 2 p + o u t p a d d i n g + 1 O = (I - 1) × s +d*(k-1) - 2p+outpadding+1 O=(I?1)×s+d?(k?1)?2p+outpadding+1

正常卷积:在这里插入图片描述
原始输入为 4 × 4 4×4 4×4,卷积核大小 3 × 3 3×3 3×3 p a d d i n g = 0 padding=0 padding=0 s t r i d e = 1 stride=1 stride=1,由于卷积操作可以通过矩阵运算来解决,因此原始图片可以看作 I 16 × 1 I_{16×1} I16×1?的矩阵 ,卷积核可以看作 K 4 × 16 K_{4×16} K4×16?的矩阵 ,那么输出是 K 4 × 16 × I 16 × 1 = O 4 × 1 K_{4×16}×I_{16×1} = O_{4×1} K4×16?×I16×1?=O4×1? 的列向量,改写为矩阵为2x2 。

转置卷积:
在这里插入图片描述
原始的图片尺寸为 2 × 2 2×2 2×2,卷积核大小为 3 × 3 3×3 3×3。由于卷积操作可以通过矩阵运算来解决,因此原始图片可以看作的 I 4 × 1 I_{4×1} I4×1?矩阵 ,卷积核可以看作 K 16 × 4 K_{16×4} K16×4?的矩阵 ,那么输出是 K 16 × 4 × I 4 × 1 = O 16 × 1 K_{16×4}×I_{4×1} = O_{16×1} K16×4?×I4×1?=O16×1?的列向量,转化为矩阵 O 4 × 4 O_{4×4} O4×4?

更详细的推导参考知乎专栏:转置卷积

在这里插入图片描述

CycleGAN代码训练过程Trace

整体理一下训练过程

train.py

该脚本为训练的起始脚本,在前几行首先实例化TrainOptions(继承了BaseOptions)来接收命令行输入参数

opt = TrainOptions().parse()   # get training options

然后是数据集的加载部分

dataset = create_dataset(opt)

接着就是加载模型的相关代码

model = create_model(opt)

models/init.py

看一下create_model()

def create_model(opt):
    """Create a model given the option.

    This function warps the class CustomDatasetDataLoader.
    This is the main interface between this package and 'train.py'/'test.py'

    Example:
        >>> from models import create_model
        >>> model = create_model(opt)
    """
    model = find_model_using_name(opt.model)
    instance = model(opt)  #实例化模型
    print("model [%s] was created" % type(instance).__name__)
    return instance

使用find_model_using_name来导入对应的包,例如命令行输入参数为cycle_gan则会导入models中的cycle_gan_model.py模块, 如下面代码中print的结果所示:

def find_model_using_name(model_name):
    
    model_filename = "models." + model_name + "_model"
    modellib = importlib.import_module(model_filename)

    model = None
    target_model_name = model_name.replace('_', '') + 'model'
    print(modellib.__dict__.items())
    for name, cls in modellib.__dict__.items():
        if name.lower() == target_model_name.lower() \
           and issubclass(cls, BaseModel):
            model = cls

    if model is None:
        print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
        exit(0)
    
    #print(model_name)       	#output:cycle_gan
    return model

model = cls成功将模型类拿到,最后用return返回,再回到create_model中利用opt实例化模型,实例化会调用所选模型的初始化方法:

cycle_gan_model.py: class CycleGANModel(BaseModel)

cyclegan中的 init() 函数

	
        # define networks (both Generators and discriminators)
        # The naming is different from those used in the paper.
        # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
        self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm,
                                        not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
        self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm,
                                        not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)

        if self.isTrain:  # define discriminators
            self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD,
                                            opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
            self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD,
                                            opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)

生成器的网络架构主要通过models/networks里面的define_G函数进行初始化,G_A与G_B构造一样。

判别器的网络架构主要通过define_D函数进行初始化,D_A与D_B也一样。

networks.py: define_G

def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]):
    """Create a generator

    Parameters:
        input_nc (int) -- the number of channels in input images
        output_nc (int) -- the number of channels in output images
        ngf (int) -- the number of filters in the last conv layer
        netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128
        norm (str) -- the name of normalization layers used in the network: batch | instance | none
        use_dropout (bool) -- if use dropout layers.
        init_type (str)    -- the name of our initialization method.
        init_gain (float)  -- scaling factor for normal, xavier and orthogonal.
        gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2

    Returns a generator

    Our current implementation provides two types of generators:
        U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images)
        The original U-Net paper: https://arxiv.org/abs/1505.04597

        Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks)
        Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations.
        We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style).


    The generator has been initialized by <init_net>. It uses RELU for non-linearity.
    """
    net = None
    norm_layer = get_norm_layer(norm_type=norm)

    if netG == 'resnet_9blocks':
        net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9)
    elif netG == 'resnet_6blocks':
        net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6)
    elif netG == 'unet_128':
        net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
    elif netG == 'unet_256':
        net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
    else:
        raise NotImplementedError('Generator model name [%s] is not recognized' % netG)
    return init_net(net, init_type, init_gain, gpu_ids) 

ReLU激活函数(Rectify Liner Unit)

通过ReLU实现稀疏后的模型能够更好地挖掘相关特征,拟合训练数据
引入ReLU的原因:

  • 采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。

  • 对于深层网络,sigmoid函数反向传播时,很容易就会出现 梯度消失 的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),从而无法完成深层网络的训练。

  • ReLu会使一部分神经元的输出为0,这样就造成了 网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。

此外,相比于其它激活函数来说,ReLU有以下优势:对于线性函数而言,ReLU的表达能力更强,尤其体现在深度网络中;而对于非线性函数而言,ReLU由于非负区间的梯度为常数,因此不存在梯度消失问题(Vanishing Gradient Problem),使得模型的收敛速度维持在一个稳定状态

参考:ReLU知乎专栏

networks.py: class ResnetGenerator(nn.Module)

因为存在梯度消失和梯度爆炸问题,深层神经网络往往难以训练。跳跃连接(Skip connection)可以从某一层网络层获取激活,然后迅速反馈给另外一层,甚至是神经网络的更深层。利用跳跃连接构建能够训练深度网络的ResNets。

以残差生成器为例,单个残差块的构造如下:残差块是带skip connection的卷积块。残差结构最大的优点:有效地缓解梯度消失,梯度爆炸的问题
一个残差块的构造:
在这里插入图片描述

class ResnetBlock(nn.Module):
    """Define a Resnet block"""

    def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
        """Initialize the Resnet block

        A resnet block is a conv block with skip connections
        We construct a conv block with build_conv_block function,
        and implement skip connections in <forward> function.
        Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf
        """
        super(ResnetBlock, self).__init__()
        self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)

    def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
        """Construct a convolutional block.

        Parameters:
            dim (int)           -- the number of channels in the conv layer.
            padding_type (str)  -- the name of padding layer: reflect | replicate | zero
            norm_layer          -- normalization layer
            use_dropout (bool)  -- if use dropout layers.
            use_bias (bool)     -- if the conv layer uses bias or not

        Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU))
        """
        conv_block = []
        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)

        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)]
        if use_dropout:
            conv_block += [nn.Dropout(0.5)]

        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)
        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)]

        return nn.Sequential(*conv_block)

    def forward(self, x):
        """Forward function (with skip connections)"""
        out = x + self.conv_block(x)  # add skip connections
        return out

skip connections: forward 前向传播返回 x + x ′ x + x_{'} x+x?

生成器构造

class ResnetGenerator(nn.Module):
    """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations.

    We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style)
    """

    def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'):
        """Construct a Resnet-based generator

        Parameters:
            input_nc (int)      -- the number of channels in input images
            output_nc (int)     -- the number of channels in output images
            ngf (int)           -- the number of filters in the last conv layer
            norm_layer          -- normalization layer
            use_dropout (bool)  -- if use dropout layers
            n_blocks (int)      -- the number of ResNet blocks
            padding_type (str)  -- the name of padding layer in conv layers: reflect | replicate | zero
        """
        assert(n_blocks >= 0)
        super(ResnetGenerator, self).__init__()
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == nn.InstanceNorm2d
        else:
            use_bias = norm_layer == nn.InstanceNorm2d

        model = [nn.ReflectionPad2d(3),
                 nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias),
                 norm_layer(ngf),
                 nn.ReLU(True)]

        n_downsampling = 2
        for i in range(n_downsampling):  # add downsampling layers
            mult = 2 ** i
            model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias),
                      norm_layer(ngf * mult * 2),
                      nn.ReLU(True)]

        mult = 2 ** n_downsampling
        for i in range(n_blocks):       # add ResNet blocks

            model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
        #print (model)
        for i in range(n_downsampling):  # add upsampling layers
            mult = 2 ** (n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
                                         kernel_size=3, stride=2,
                                         padding=1, output_padding=1,
                                         bias=use_bias),
                      norm_layer(int(ngf * mult / 2)),
                      nn.ReLU(True)]
        model += [nn.ReflectionPad2d(3)]
        model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
        model += [nn.Tanh()]
        #print(model)
        self.model = nn.Sequential(*model)

    def forward(self, input):
        """Standard forward"""
        return self.model(input)

输入首先经过reflection padding,再经过一个conv2d, norm layer 和 Rule 的组合,然后进入下采样阶段——先后经过两个下采样模块(conv2d → norm layer → Relu),然后经过若干个残差块(6 || 9),随后进入上采样阶段——先后经过两个上采样模块,只不过将下采样模块中的conv2d换成反卷积操作convtranspose2d,最后在经过一次reflection padding,conv2d, 然后经过tanh得到最后输出。

整个架构为:

x → reflection padding → conv2d → Relu → down sampling → down sampling → resblock * n → up sampling → up sampling → reflection padding → conv2d → tanh → y


判别器构造

class NLayerDiscriminator(nn.Module):
    """Defines a PatchGAN discriminator"""

    def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
        """Construct a PatchGAN discriminator

        Parameters:
            input_nc (int)  -- the number of channels in input images
            ndf (int)       -- the number of filters in the last conv layer
            n_layers (int)  -- the number of conv layers in the discriminator
            norm_layer      -- normalization layer
        """
        super(NLayerDiscriminator, self).__init__()
        if type(norm_layer) == functools.partial:  # no need to use bias as BatchNorm2d has affine parameters
            use_bias = norm_layer.func == nn.InstanceNorm2d
        else:
            use_bias = norm_layer == nn.InstanceNorm2d

        kw = 4
        padw = 1
        sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
        nf_mult = 1
        nf_mult_prev = 1
        for n in range(1, n_layers):  # gradually increase the number of filters
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** n, 8)
            sequence += [
                nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
                norm_layer(ndf * nf_mult),
                nn.LeakyReLU(0.2, True)
            ]

        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8)
        sequence += [
            nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
            norm_layer(ndf * nf_mult),
            nn.LeakyReLU(0.2, True)
        ]

        sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]  # output 1 channel prediction map
        self.model = nn.Sequential(*sequence)

    def forward(self, input):
        """Standard forward."""
        return self.model(input)

整个架构如下:

*x → n (conv2d → norm_layer → LeakyRelu) → conv2d → norm_layer → LeakyRelu → conv2d → y

整个网络的前向传播过程:

def forward(self):
    """Run forward pass; called by both functions <optimize_parameters> and <test>."""
    self.fake_B = self.netG_A(self.real_A)  # G_A(A)
    self.rec_A = self.netG_B(self.fake_B)   # G_B(G_A(A))
    self.fake_A = self.netG_B(self.real_B)  # G_B(B)
    self.rec_B = self.netG_A(self.fake_A)   # G_A(G_B(B))

train.py 计算损失

    for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1):    # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
        epoch_start_time = time.time()  # timer for entire epoch
        iter_data_time = time.time()    # timer for data loading per iteration
        epoch_iter = 0                  # the number of training iterations in current epoch, reset to 0 every epoch
        visualizer.reset()              # reset the visualizer: make sure it saves the results to HTML at least once every epoch
        model.update_learning_rate()    # update learning rates in the beginning of every epoch.
        for i, data in enumerate(dataset):  # inner loop within one epoch
            iter_start_time = time.time()  # timer for computation per iteration
            if total_iters % opt.print_freq == 0:
                t_data = iter_start_time - iter_data_time

            total_iters += opt.batch_size
            epoch_iter += opt.batch_size
            model.set_input(data)         # unpack data from dataset and apply preprocessing
            model.optimize_parameters()   # calculate loss functions, get gradients, update network weights

通过 optimize_parameters() 计算损失,继承自class BaseModel,看cycle_gan如何复写基类中的这个抽象函数。

cycle_gan_model.py: class CycleGANModel(BaseModel)

    def optimize_parameters(self):
        """Calculate losses, gradients, and update network weights; called in every training iteration"""
        # forward
        self.forward()      # compute fake images and reconstruction images.
        # G_A and G_B
        self.set_requires_grad([self.netD_A, self.netD_B], False)  # Ds require no gradients when optimizing Gs
        self.optimizer_G.zero_grad()  # set G_A and G_B's gradients to zero
        self.backward_G()             # calculate gradients for G_A and G_B
        self.optimizer_G.step()       # update G_A and G_B's weights
        # D_A and D_B
        self.set_requires_grad([self.netD_A, self.netD_B], True)
        self.optimizer_D.zero_grad()   # set D_A and D_B's gradients to zero
        self.backward_D_A()      # calculate gradients for D_A
        self.backward_D_B()      # calculate graidents for D_B
        self.optimizer_D.step()  # update D_A and D_B's weights

其中 set_requires_grad() 方法负责设置判别器和生成器中的参数是否需要记录梯度,这里生成器不需要记录的原因是,生成器的进化只依赖于判别器给生成器的反馈与判别器的参数无关。

    def set_requires_grad(self, nets, requires_grad=False):
        """Set requies_grad=Fasle for all the networks to avoid unnecessary computations
        Parameters:
            nets (network list)   -- a list of networks
            requires_grad (bool)  -- whether the networks require gradients or not
        """
        if not isinstance(nets, list):
            nets = [nets]
        for net in nets:
            if net is not None:
                for param in net.parameters():
                    param.requires_grad = requires_grad

backward_G()

lambda_A:weight for cycle loss (A -> B -> A) A方向重建损失权重

lambda_B:weight for cycle loss (B -> A -> B) B方向重建损失权重

lambda_identity:identity loss相对于cycle loss的比例

通过判断lambda_idt是否大于0,来判断当前实验是否计算Identity Loss

    def backward_G(self):
        """Calculate the loss for generators G_A and G_B"""
        lambda_idt = self.opt.lambda_identity
        lambda_A = self.opt.lambda_A
        lambda_B = self.opt.lambda_B
        # Identity loss
        if lambda_idt > 0:
            # G_A should be identity if real_B is fed: ||G_A(B) - B||
            self.idt_A = self.netG_A(self.real_B)
            self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt
            # G_B should be identity if real_A is fed: ||G_B(A) - A||
            self.idt_B = self.netG_B(self.real_A)
            self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt
        else:
            self.loss_idt_A = 0
            self.loss_idt_B = 0

        # GAN loss D_A(G_A(A))
        self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True)
        # GAN loss D_B(G_B(B))
        self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True)
        # Forward cycle loss || G_B(G_A(A)) - A||
        self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A
        # Backward cycle loss || G_A(G_B(B)) - B||
        self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B
        # combined loss and calculate gradients
        self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B
        self.loss_G.backward()

GAN loss调用network.py中的GANLoss
Cycle loss, Identity loss均为L1损失函数。

            # define loss functions
            self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)  # define GAN loss.
            self.criterionCycle = torch.nn.L1Loss()
            self.criterionIdt = torch.nn.L1Loss()

networks.py: class GANLoss(nn.Module)

init() 方法中有三种loss可以选择:lsgan,vanilla,wgangp。然后用register_buffer(无需在反向传播中更新,因此用buffer创建,state_dict也会记录用buffer创建的参数)创建real label,fake label对应的tensor。随后在get_target_tensor()方法中将label tensor用expend_as扩展为和prediction一样shape的tensor,方便后续loss的计算。

class GANLoss(nn.Module):
    """Define different GAN objectives.

    The GANLoss class abstracts away the need to create the target label tensor
    that has the same size as the input.
    """

    def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
        """ Initialize the GANLoss class.

        Parameters:
            gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
            target_real_label (bool) - - label for a real image
            target_fake_label (bool) - - label of a fake image

        Note: Do not use sigmoid as the last layer of Discriminator.
        LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
        """
        super(GANLoss, self).__init__()
        self.register_buffer('real_label', torch.tensor(target_real_label))
        self.register_buffer('fake_label', torch.tensor(target_fake_label))
        self.gan_mode = gan_mode
        if gan_mode == 'lsgan':
            self.loss = nn.MSELoss()
        elif gan_mode == 'vanilla':
            self.loss = nn.BCEWithLogitsLoss()
        elif gan_mode in ['wgangp']:
            self.loss = None
        else:
            raise NotImplementedError('gan mode %s not implemented' % gan_mode)

    def get_target_tensor(self, prediction, target_is_real):
        """Create label tensors with the same size as the input.

        Parameters:
            prediction (tensor) - - tpyically the prediction from a discriminator
            target_is_real (bool) - - if the ground truth label is for real images or fake images

        Returns:
            A label tensor filled with ground truth label, and with the size of the input
        """

        if target_is_real:
            target_tensor = self.real_label
        else:
            target_tensor = self.fake_label
        return target_tensor.expand_as(prediction) #set target_tensor same shape as prediction

    def __call__(self, prediction, target_is_real):
        """Calculate loss given Discriminator's output and grount truth labels.

        Parameters:
            prediction (tensor) - - tpyically the prediction output from a discriminator
            target_is_real (bool) - - if the ground truth label is for real images or fake images

        Returns:
            the calculated loss.
        """
        if self.gan_mode in ['lsgan', 'vanilla']:
            target_tensor = self.get_target_tensor(prediction, target_is_real)
            loss = self.loss(prediction, target_tensor)
        elif self.gan_mode == 'wgangp':
            if target_is_real:
                loss = -prediction.mean()
            else:
                loss = prediction.mean()
        return loss

horse2zebra数据集训练过程可视化

在这里插入图片描述

realfakecycleidentity

在这里插入图片描述

Screen使用

我们常需要SSH 或者telent 远程登录到Linux 服务器,经常运行一些需要很长时间才能完成的任务,最常用的就是我们训练一个模型,时间很长。在此期间不能关掉窗口或者断开连接,否则这个任务就会被杀掉,一切半途而废了。这时,我们可以用screen命令解决这个问题。
screen命令用法:

创建新的screen会话
screen -S [SCREEN]

加入screen会话

screen -x [SCREEN]

退出并关闭screen会话

exit

离开当前screen会话(不退出)

Ctrl+a+d

显示所有已经打开的screen会话

screen -ls

恢复某screen会话(只有当此会话没人连接时,用-r才可以恢复连接,)

screen -r [SCREEN]

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-09-04 01:12:01  更:2022-09-04 01:15:43 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 -2024/12/28 19:07:54-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码
数据统计