IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 神经网络的图像识别技术神经网络识别图像原理 -> 正文阅读

[人工智能]神经网络的图像识别技术神经网络识别图像原理

图像识别系统有几种方式?具体是什么?

图片识别的实现基础是由图像处理、计算机视觉和模糊识别等多学科实现的,现阶段市面上已经有很多像图普科技成熟大厂可以提供智能审核的软件。

在人工智能中,实现图像识别有一种算法是基于深度学习多层神经网络实现的,主要是基于模仿人的神经网络,以神经元为单位,算法包含输入层,多个节点输出层,以及权重值,需要大量的训练样本去调整模型以达到误差值最小。

图像处理具体包括编码、压缩、增强、分割;图像识别包括特征提取、特征选择和分类分析,对图像类别和结构进行分析;图像理解包括机器学习和深度学习,即是对图像描述和解释。

谷歌人工智能写作项目:神经网络伪原创

人脸图像如何匹配和识别?

写作猫

其提取人脸图像的特征数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出,人脸识别就是将待识别的人脸特征与已得到人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。

这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。

关于人工智能我们需要了解什么

随着互联网的不断发展,各种计算机智能系统技术也得到了很好的发展。那么有多少人了解人工智能呢?关于人工智能技术中的图像识别有哪些要点呢?大家对于人工智能需要了解什么?

对于当下热门的AI+图像识别技术来说,神经网络图像识别技术和非线性降维图像识别技术是两种最常用的图像识别技术。下面电脑培训为大家详细分析以下两种常见的AI图像识别技术。

一、神经网络图像识别技术想要了解AI图像的识别技术,最重要的就是需要了解神经网络图像识别技术,其实神经网络图像识别技术就是人工神经网络图像识别技术,它主要是在现代神经生物学研究基础上提出的模拟生物过程中反映人脑某些特性的计算结构,在解释的过程中主要使用模拟,但是在实际使用过程中,IT培训发现神经网络系统本身是没有完全模拟人类的神经网络的,主要是通过对人类的神经网络抽象、简化和模拟实现相关计算结构效率进行提升的。

对于神经网络图像识别技术来说,图像识别主要可以通过神经网络学习算法的应用来实现。在使用神经网络的图像识别中,我们首先需要预处理相关图像。

并且昆明北大青鸟认为该预处理主要包括将真彩色图像转换为灰色,度数图、灰度图像的旋转和放大,灰度图像的标准化等。

二、非线性降维的图像识别技术除了神经网络的图像识别技术之外,非线性降维的图像识别技术也是当前AI时代更常用的图像识别技术。对于传统应用计算机实现的图像识别技术,它是一种相对高维的识别技术。

这种高维特性使得计算机在图像识别过程中经常承受很多不必要的负担。这种负担自然会影响图像识别的速度和质量,非线性降维图像识别技术是一种能够更好地实现图像识别和降维的技术形式。

在学习软件开发的过程中,很多人对IT行业的了解非常少,不知道IT行业具体能够做什么?

其实在生活中的很多技术都是需要在计算机技术的基础上进行实施的,在参加昆明电脑培训的同时了解更多相关的行业知识,这样对以后的发展有很大的帮助。

本人毕设题目是关于神经网络用于图像识别方面的,但是很没有头续~我很不理解神经网络作用的这一机理

我简单说一下,举个例子,比如说我们现在搭建一个识别苹果和橘子的网络模型:我们现在得需要两组数据,一组表示特征值,就是网络的输入(p),另一组是导师信号,告诉网络是橘子还是苹果(网络输出t):我们的样本这样子假设(就是):pt10312142这两组数据是这样子解释的:我们假设通过3个特征来识别一个水果是橘子还是苹果:形状,颜色,味道,第一组形状、颜色、味道分别为:103(当然这些数都是我随便乱编的,这个可以根据实际情况自己定义),有如上特征的水果就是苹果(t为1),而形状、颜色、味道为:214的表示这是一个橘子(t为2)。

好了,我们的网络模型差不多出来了,输入层节点数为3个(形状、颜色,味道),输出层节点为一个(1为苹果2为橘子),隐藏层我们设为一层,节点数先不管,因为这是一个经验值,还有另外的一些参数值可以在matlab里设定,比如训练函数,训练次数之类,我们现在开始训练网络了,首先要初始化权值,输入第一组输入:103,网络会输出一个值,我们假设为4,那么根据导师信号(正确的导师信号为1,表示这是一个苹果)计算误差4-1=3,误差传给bp神经网络,神经网络根据误差调整权值,然后进入第二轮循环,那么我们再次输入一组数据:204(当仍然你可以还输入103,而且如果你一直输入苹果的特征,这样子会让网络只识别苹果而不会识别橘子了,这回明白你的问题所在了吧),同理输出一个值,再次反馈给网络,这就是神经网络训练的基本流程,当然这两组数据肯定不够了,如果数据足够多,我们会让神经网络的权值调整到一个非常理想的状态,是什么状态呢,就是网络再次输出后误差很小,而且小于我们要求的那个误差值。

接下来就要进行仿真预测了t_1=sim(net,p),net就是你建立的那个网络,p是输入数据,由于网络的权值已经确定了,我们这时候就不需要知道t的值了,也就是说不需要知道他是苹果还是橘子了,而t_1就是网络预测的数据,它可能是1或者是2,也有可能是1.3,2.2之类的数(绝大部分都是这种数),那么你就看这个数十接近1还是2了,如果是1.5,我们就认为他是苹果和橘子的杂交,呵呵,开玩笑的,遇到x=2.5,我一般都是舍弃的,表示未知。

总之就是你需要找本资料系统的看下,鉴于我也是做图像处理的,我给你个关键的提醒,用神经网络做图像处理的话必须有好的样本空间,就是你的数据库必须是标准的。

至于网络的机理,训练的方法什么的,找及个例子用matlab仿真下,看看效果,自己琢磨去吧,这里面主要是你隐含层的设置,训练函数选择及其收敛速度以及误差精度就是神经网络的真谛了,想在这么小的空间给你介绍清楚是不可能的,关键是样本,提取的图像特征必须带有相关性,这样设置的各个阈值才有效。

OK,好好学习吧,资料去matlab中文论坛上找,在不行就去baudu文库上,你又不需要都用到,何必看一本书呢!祝你顺利毕业!

?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-09-15 02:00:48  更:2022-09-15 02:01:43 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 22:33:25-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码