| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 传统算法与神经网络算法神经网络算法有什么用 -> 正文阅读 |
|
[人工智能]传统算法与神经网络算法神经网络算法有什么用 |
神经网络到底有什么作用,具体是用来干什么的?神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。 这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。神经网络可以用于模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。 随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。 谷歌人工智能写作项目:神经网络伪原创 神经网络到底能干什么?神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内文案狗。 例如预报天气:温度 湿度 气压等作为输入 天气情况作为输出利用历史得输入输出关系训练出神经网络,然后利用这样的神经网络输入今天的温度 湿度 气压等 得出即将得天气情况当然这样的例子不够精确,但是神经网络得典型应用了。 希望采纳! 神经网络能干什么?神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内。 例如预报天气:温度 湿度 气压等作为输入 天气情况作为输出利用历史得输入输出关系训练出神经网络,然后利用这样的神经网络输入今天的温度 湿度 气压等 得出即将得天气情况当然这样的例子不够精确,但是神经网络得典型应用了。 神经网络算法可以解决的问题有哪些人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。 它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好的自组织自学习能力等特点。 BP(Back Propagation)算法又称为误差 反向传播算法,是人工神经网络中的一种监督式的学习算法。 BP 神经网络算法在理 论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。 而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许 多领域都有着广泛的应用前景。 工作原理人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。 大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。 神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。 树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。 在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。 每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。 人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。 人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。 与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。 人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。 所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。 首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。 在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。 神经网络算法可以解决的问题有哪些。 什么是神经网络,举例说明神经网络的应用我想这可能是你想要的神经网络吧! 什么是神经网络:人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。 这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 神经网络的应用:应用在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。 纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。 神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。 主要的研究工作集中在以下几个方面:生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。 建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。 算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。 神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。 神经网络可以完成哪些任务?神经网络算法是什么?Introduction --------------------------------------------------------------------------------神经网络是新技术领域中的一个时尚词汇。 很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍所有关于神经网络的基本包括它的功能、一般结构、相关术语、类型及其应用。 “神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。在本文,我会同时使用这两个互换的术语。 一个真正的神经网络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。 在这里有一个难题:我们对生物学上的神经网络知道的不多!因此,不同类型之间的神经网络体系结构有很大的不同,我们所知道的只是神经元基本的结构。 The neuron --------------------------------------------------------------------------------虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。 基本神经元包含有synapses、soma、axon及dendrites。 Synapses负责神经元之间的连接,它们不是直接物理上连接的,而是它们之间有一个很小的空隙允许电子讯号从一个神经元跳到另一个神经元。 然后这些电子讯号会交给soma处理及以其内部电子讯号将处理结果传递给axon。而axon会将这些讯号分发给dendrites。 最后,dendrites带着这些讯号再交给其它的synapses,再继续下一个循环。如同生物学上的基本神经元,人工的神经网络也有基本的神经元。 每个神经元有特定数量的输入,也会为每个神经元设定权重(weight)。权重是对所输入的资料的重要性的一个指标。 然后,神经元会计算出权重合计值(net value),而权重合计值就是将所有输入乘以它们的权重的合计。每个神经元都有它们各自的临界值(threshold),而当权重合计值大于临界值时,神经元会输出1。 相反,则输出0。最后,输出会被传送给与该神经元连接的其它神经元继续剩余的计算。 Learning --------------------------------------------------------------------------------正如上述所写,问题的核心是权重及临界值是该如何设定的呢? 世界上有很多不同的训练方式,就如网络类型一样多。但有些比较出名的包括back-propagation, delta rule及Kohonen训练模式。 由于结构体系的不同,训练的规则也不相同,但大部份的规则可以被分为二大类别 - 监管的及非监管的。监管方式的训练规则需要“教师”告诉他们特定的输入应该作出怎样的输出。 然后训练规则会调整所有需要的权重值(这是网络中是非常复杂的),而整个过程会重头开始直至数据可以被网络正确的分析出来。监管方式的训练模式包括有back-propagation及delta rule。 非监管方式的规则无需教师,因为他们所产生的输出会被进一步评估。 Architecture --------------------------------------------------------------------------------在神经网络中,遵守明确的规则一词是最“模糊不清”的。 因为有太多不同种类的网络,由简单的布尔网络(Perceptrons),至复杂的自我调整网络(Kohonen),至热动态性网络模型(Boltzmann machines)! 而这些,都遵守一个网络体系结构的标准。一个网络包括有多个神经元“层”,输入层、隐蔽层及输出层。输入层负责接收输入及分发到隐蔽层(因为用户看不见这些层,所以见做隐蔽层)。 这些隐蔽层负责所需的计算及输出结果给输出层,而用户则可以看到最终结果。现在,为免混淆,不会在这里更深入的探讨体系结构这一话题。 对于不同神经网络的更多详细资料可以看Generation5 essays尽管我们讨论过神经元、训练及体系结构,但我们还不清楚神经网络实际做些什么。 The Function of ANNs --------------------------------------------------------------------------------神经网络被设计为与图案一起工作 - 它们可以被分为分类式或联想式。 分类式网络可以接受一组数,然后将其分类。例如ONR程序接受一个数字的影象而输出这个数字。或者PPDA32程序接受一个坐标而将它分类成A类或B类(类别是由所提供的训练决定的)。 更多实际用途可以看Applications in the Military中的军事雷达,该雷达可以分别出车辆或树。联想模式接受一组数而输出另一组。 例如HIR程序接受一个‘脏’图像而输出一个它所学过而最接近的一个图像。联想模式更可应用于复杂的应用程序,如签名、面部、指纹识别等。 The Ups and Downs of Neural Networks --------------------------------------------------------------------------------神经网络在这个领域中有很多优点,使得它越来越流行。 它在类型分类/识别方面非常出色。神经网络可以处理例外及不正常的输入数据,这对于很多系统都很重要(例如雷达及声波定位系统)。很多神经网络都是模仿生物神经网络的,即是他们仿照大脑的运作方式工作。 神经网络也得助于神经系统科学的发展,使它可以像人类一样准确地辨别物件而有电脑的速度!前途是光明的,但现在...是的,神经网络也有些不好的地方。这通常都是因为缺乏足够强大的硬件。 神经网络的力量源自于以并行方式处理资讯,即是同时处理多项数据。因此,要一个串行的机器模拟并行处理是非常耗时的。 神经网络的另一个问题是对某一个问题构建网络所定义的条件不足 - 有太多因素需要考虑:训练的算法、体系结构、每层的神经元个数、有多少层、数据的表现等,还有其它更多因素。 因此,随着时间越来越重要,大部份公司不可能负担重复的开发神经网络去有效地解决问题。 NN 神经网络,Neural Network ANNs 人工神经网络,Artificial Neural Networks neurons 神经元 synapses 神经键 self-organizing networks 自我调整网络 networks modelling thermodynamic properties 热动态性网络模型 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++网格算法我没听说过好像只有网格计算这个词网格计算是伴随着互联网技术而迅速发展起来的,专门针对复杂科学计算的新型计算模式。 这种计算模式是利用互联网把分散在不同地理位置的电脑组织成一个“虚拟的超级计算机”,其中每一台参与计算的计算机就是一个“节点”,而整个计算是由成千上万个“节点”组成的“一张网格”, 所以这种计算方式叫网格计算。 这样组织起来的“虚拟的超级计算机”有两个优势,一个是数据处理能力超强;另一个是能充分利用网上的闲置处理能力。 简单地讲,网格是把整个网络整合成一台巨大的超级计算机,实现计算资源、存储资源、数据资源、信息资源、知识资源、专家资源的全面共享。 BP神经网络是用来干嘛的阿?用样本去训练一个BP网络,然后用新的样本作为输入,再通过这个已经训练好的BP网络,得到的数据就是仿真的结果,这就是BP网络仿真。 我们训练一个BP网络就好像是在训练一个神经系统,然后用这个已经具备分析能力的神经系统去分析事情,这就是为什么要仿真,说到底就是为了用。 仿真的作用你可以从BP神经网络的用途上去看,例如很经典的可以用来做分类器等。你用不同类别的样本(输入+对应的期望输出)作为训练,然后给出一个新的输入,BP网就能给你这个所属的类别。 卷积神经网络主要做什么用的?卷积网络的特点主要是卷积核参数共享,池化操作。 参数共享的话的话是因为像图片等结构化的数据在不同的区域可能会存在相同的特征,那么就可以把卷积核作为detector,每一层detect不同的特征,但是同层的核是在图片的不同地方找相同的特征。 然后把底层的特征组合传给后层,再在后层对特征整合(一般深度网络是说不清楚后面的网络层得到了什么特征的)。而池化主要是因为在某些任务中降采样并不会影响结果。 所以可以大大减少参数量,另外,池化后在之前同样大小的区域就可以包含更多的信息了。综上,所有有这种特征的数据都可以用卷积网络来处理。 有卷积做视频的,有卷积做文本处理的(当然这两者由于是序列信号,天然更适合用lstm处理)另外,卷积网络只是个工具,看你怎么使用它,有必要的话你可以随意组合池化和卷积的顺序,可以改变网络结构来达到自己所需目的的,不必太被既定框架束缚。 ? |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年12日历 | -2024/12/28 18:21:48- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |
数据统计 |