CNN卷积神经网络结构有哪些特点?
局部连接,权值共享,池化操作,多层次结构。
1、局部连接使网络可以提取数据的局部特征;2、权值共享大大降低了网络的训练难度,一个Filter只提取一个特征,在整个图片(或者语音/文本) 中进行卷积;3、池化操作与多层次结构一起,实现了数据的降维,将低层次的局部特征组合成为较高层次的特征,从而对整个图片进行表示。
谷歌人工智能写作项目:神经网络伪原创
卷积神经网络中用1*1 卷积有什么作用或者好处
1*1卷积的主要作用有以下几点:1、降维( dimension reductionality )写作猫。
比如,一张500 * 500且厚度depth为100 的图片在20个filter上做1*1的卷积,那么结果的大小为500*500*20。2、加入非线性。
卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提升网络的表达能力;
卷积神经网络主要做什么用的?
卷积网络的特点主要是卷积核参数共享,池化操作。
参数共享的话的话是因为像图片等结构化的数据在不同的区域可能会存在相同的特征,那么就可以把卷积核作为detector,每一层detect不同的特征,但是同层的核是在图片的不同地方找相同的特征。
然后把底层的特征组合传给后层,再在后层对特征整合(一般深度网络是说不清楚后面的网络层得到了什么特征的)。而池化主要是因为在某些任务中降采样并不会影响结果。
所以可以大大减少参数量,另外,池化后在之前同样大小的区域就可以包含更多的信息了。综上,所有有这种特征的数据都可以用卷积网络来处理。
有卷积做视频的,有卷积做文本处理的(当然这两者由于是序列信号,天然更适合用lstm处理)另外,卷积网络只是个工具,看你怎么使用它,有必要的话你可以随意组合池化和卷积的顺序,可以改变网络结构来达到自己所需目的的,不必太被既定框架束缚。
卷积神经网络 为什么优于 机器学习
首先搞清楚机器学习以及卷积神经网络概念。其实卷积神经网络是机器学习中的一种算法。主要用于图像特征提取。而机器学习主要指统计机器学习。而机器学习有三个要素:1、模型2、策略3、算法,CNN属于一种算法。
所以没有什么优于的说法。
?
|