IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 深度神经网络预测模型神经网络预测未来数据 -> 正文阅读

[人工智能]深度神经网络预测模型神经网络预测未来数据

matlab神经网络可不可以三维训练,二维输出?

可以 你可以对神经元结构进行设置 net=newff(minmax(p),[输入节点数,隐含层神经元个数,输出节点数],{'tansig','purelin','logsig'},'trainlm');。

谷歌人工智能写作项目:神经网络伪原创

数学滤波算法可以处理三个坐标点吗?

滤波算法可以处理三个坐标点的写作猫。滤波在三坐标中的应用:1、粗糙度对测量的影响:测量点也在图中被放大获取到大量的点,表面粗度被认为是,引起“噪点”的原因。

2、探针的机械滤波:选择探针直径-使用探针测量工件会由于工件表面结构的影响产生机械滤波。由于探针直径过大精细的工件表面的形状无法捕捉,因此可看作是机械低通滤波。

3、三坐标的滤波:用同样参数进行低通滤波的扫描线。如下图所示,描绘出的图形差异并不明显。4、2 RC滤波:不再使用圆度测量最初的标准化滤波器,但是已被现代滤波计算所取代。

5、高斯滤波:坐标测量技术中标准滤波算法。此滤波方法为标准算法被广泛使用。他使用高斯曲线加权计算测量点得到新的轮廓。

6、样条滤波:基于滤波方程的增强滤波方法(多项式计算),样条滤波更合乎标准,也更优于高斯滤波但并不是标准滤波方法。

扩展资料:图像滤波是一种非常重要的图像处理技术,现在大火的卷积神经网络其实也是滤波的一种,都是用卷积核去提取图像的特征模式。

不过,传统的滤波,使用的卷积核是固定的参数,是由经验非常丰富的人去手动设计的,也称为手工特征。

而卷积神经网络的卷积核参数初始时未知的,根据不同的任务由数据和神经网络反向传播算法去学习得到的参数,更能适应于不同的任务。

自适应中值滤波中值滤波器是一种常用的非线性滤波器,其基本原理是:选择待处理像素的一个邻域中各像素值的中值来代替待处理的像素。

主要功能使某像素的灰度值与周围领域内的像素比较接近,从而消除一些孤立的噪声点,所以中值滤波器能够很好的消除椒盐噪声。

不仅如此,中值滤波器在消除噪声的同时,还能有效的保护图像的边界信息,不会对图像造成很大的模糊(相比于均值滤波器)。

中值滤波器的效果受滤波窗口尺寸的影响较大,在消除噪声和保护图像的细节存在着矛盾:滤波窗口较小,则能很好的保护图像中的某些细节,但对噪声的过滤效果就不是很好,因为实际中的噪声不可能只占一个像素位置;反之,窗口尺寸较大有较好的噪声过滤效果,但是会对图像造成一定的模糊。

另外,根据中值滤波器原理,如果在滤波窗口内的噪声点的个数大于整个窗口内非噪声像素的个数,则中值滤波就不能很好的过滤掉噪声。

神经网络Kohonen模型

一、Kohonen模型概述1981年芬兰赫尔辛基大学Kohonen教授提出了一个比较完整的,分类性能较好的自组织特征影射(Self-Organizing Feature Map)人工神经网络(简称SOM网络)方案。

这种网络也称为Kohonen特征影射网络。这种网络模拟大脑神经系统自组织特征影射功能,它是一种竞争式学习网络,在学习中能无监督地进行自组织学习。

二、Hohonen模型原理1.概述SOM网络由输入层和竞争层组成。输入层神经元数为N,竞争层由M=R×C神经元组成,构成一个二维平面阵列或一个一维阵列(R=1)。输入层和竞争层之间实现全互连接。

SOM网络的基本思想是网络竞争层各神经元竞争对输入模式的响应机会,最后仅有一个神经元成为竞争的胜者,并对那些与获胜神经元有关的各连接权朝着更有利于它竞争的方向调整,这一获胜神经元就表示对输入模式的分类。

SOM算法是一种无教师示教的聚类方法,它能将任意输入模式在输出层映射成一维或二维离散图形,并保持其拓扑结构不变。即在无教师的情况下,通过对输入模式的自组织学习,在竞争层将分类结果表示出来。

此外,网络通过对输入模式的反复学习,可以使连接权矢量空间分布密度与输入模式的概率分布趋于一致,即连接权矢量空间分布能反映输入模式的统计特征。

2.网络权值初始化因为网络输入很可能出现在中间区,因此,如果竞争层的初始权值选择在输入空间的中间区,则其学习效果会更加有效。

3.邻域距离矩阵SOM网络中的神经元可以按任何方式排列,这种排列可以用表示同一层神经元间的Manhattan距离的邻域距离矩阵D来描述,而两神经元的Manhattan距离是指神经元坐标相减后的矢量中,其元素绝对值之和。

4.Kohonen竞争学习规则设SOM网络的输入模式为Xp=( , ,…, ),p=1,2.…,P。

竞争层神经元的输出值为Yj(j=1,2,…,M),竞争层神经元j与输入层神经元之间的连接权矢量为Wj=(wj1,wj2,…,wjN),j=1,2,…,M。

Kohonen网络自组织学习过程包括两个部分:一是选择最佳匹配神经元,二是权矢量自适应变化的更新过程。

确定输入模式Xp与连接权矢量Wj的最佳匹配的评价函数是两个矢量的欧氏距离最小,即 ,j=1,2,…,M,]]g,确定获胜神经元g。dg=mjin(dj),j=1,2,…,M。

求输入模式Xp在竞争层的获胜神经元g及其在邻域距离nd内的神经元的输出。中国矿产资源评价新技术与评价新模型dgm为邻域距离矩阵D的元素,为竞争层中获胜神经元g与竞争层中其它神经元的距离。

求输入模式Xp在竞争层的获胜神经元g及其在邻域距离nd内的神经元的权值修正值。中国矿产资源评价新技术与评价新模型式中:i=1,2,…,N;lr为学习速率;t为学习循环次数。

Δwjt(t+1)的其余元素赋值为0。进行连接权的调整wji(t+1)=wji(t)+Δwji(t+1)。

5.权值学习中学习速率及邻域距离的更新(1)SOM网络的学习过程分为两个阶段第一阶段为粗学习与粗调整阶段。

在这一阶段内,连接权矢量朝着输入模式的方向进行调整,神经元的权值按照期望的方向在适应神经元位置的输入空间建立次序,大致确定输入模式在竞争层中所对应的影射位置。

一旦各输入模式在竞争层有了相对的影射位置后,则转入精学习与细调整阶段,即第二阶段。

在这一阶段内,网络学习集中在对较小的范围内的连接权进行调整,神经元的权值按照期望的方向在输入空间伸展,直到保留到他们在粗调整阶段所建立的拓扑次序。学习速率应随着学习的进行不断减小。

(2)邻域的作用与更新在SOM网络中,脑神经细胞接受外界信息的刺激产生兴奋与抑制的变化规律是通过邻域的作用来体现的邻域规定了与获胜神经元g连接的权向量Wg进行同样调整的其他神经元的范围。

在学习的最初阶段,邻域的范围较大,随着学习的深入进行,邻域的范围逐渐缩小。

(3)学习速率及邻域距离的更新在粗调整阶段,学习参数初始化最大学习循环次数 MAX_STEP1=1000,粗调整阶段学习速率初值 LR1=1.4,细调整阶段学习速率初值 LR2=0.02,最大邻域距离 MAX_ND1=Dmax,Dmax为邻域距离矩阵D的最大元素值。

粗调阶段学习循环次数step≤MAX_STEP1,学习速率lr从LR1调整到LR2,邻域距离nd 从MAX_ND1调整到1,求更新系数r,r=1-step/MAX_STEP1,邻域距离nd更新,nd=1.00001+(MAX_ND1-1)×r。

学习速率lr更新,lr=LR2+(LR1-LR2)×r。在细调整阶段,学习参数初始化,最大学习循环次数 MAX_STEP2=2000,学习速率初值 LR2=0.02,最大邻域距离 MAX_ND2=1。

细调阶段MAX_STEP1<step≤MAX_STEP1+MAX_STEP2,学习速率lr慢慢从LR2减少,邻域距离nd设为1,邻域距离nd更新,nd=MAX_ND2+0.00001。

学习速率lr更新,lr=LR2×(MAX_STEP1/step)。6.网络的回想——预测SOM网络经学习后按照下式进行回想:中国矿产资源评价新技术与评价新模型Yj=0,j=1,2,…,M,(j≠g)。

将需要分类的输入模式提供给网络的输入层,按照上述方法寻找出竞争层中连接权矢量与输入模式最接近的神经元,此时神经元有最大的激活值1,而其它神经元被抑制而取0值。这时神经元的状态即表示对输入模式的分类。

三、总体算法1.SOM权值学习总体算法(1)输入参数X[N][P]。(2)构造权值矩阵W[M][N]。1)由X[N][P]求Xmid[N],2)由Xmid[N]构造权值W[M][N]。

(3)构造竞争层。1)求竞争层神经元数M,2)求邻域距离矩阵D[M][M],3)求矩阵D[M][M]元素的最大值Dmax。(4)学习参数初始化。(5)学习权值W[M][N]。

1)学习参数学习速率lr,邻域距离nd更新,分两阶段:(i)粗调阶段更新;(ii)细调阶段更新。2)求输入模式X[N][p]在竞争层的获胜神经元win[p]。

(i)求X[N][p]与W[m][N]的欧氏距离dm;(ii)按距离dm最短,求输入模式X[N][p]在竞争层的获胜神经元win[p]。

3)求输入模式X[N][p]在竞争层的获胜神经元win[p]及其在邻域距离nd内的神经元的输出Y[m][p]。

4)求输入模式X[N][p]在竞争层的获胜神经元win[p]及其在邻域距离nd内的神经元的权值修正值ΔW[m][N],从而得到输入模式X[N][p]产生的权值修正值ΔW[M][N]。

5)权值修正W[M][N]=W[M][N]+ΔW[M][N]。

6)学习结束条件:(i)学习循环到MAX_STEP次;(ii)学习速率lr达到用户指定的LR_MIN;(iii)学习时间time达到用户指定的TIME_LIM。(6)输出。

1)学习得到的权值矩阵W[M][N];2)邻域距离矩阵D[M][M]。(7)结束。2.SOM预测总体算法(1)输入需分类数据X[N][P],邻域距离矩阵D[M][M]。

(2)求输入模式X[N][p]在竞争层的获胜神经元win[p]。1)求X[N][p]与W[m][N]的欧氏距离dm;2)按距离dm最短,求输入模式X[N][p]在竞争层的获胜神经元win[p]。

(3)求获胜神经元win[p]在竞争层排列的行列位置。(4)输出与输入数据适应的获胜神经元win[p]在竞争层排列的行列位置,作为分类结果。(5)结束。

四、总体算法流程图Kohonen总体算法流程图见附图4。五、数据流图Kohonen数据流图见附图4。

六、无模式识别总体算法假定有N个样品,每个样品测量M个变量,则有原始数据矩阵:X=(xij)N×M,i=1,2,…,N,j=1,2,…,M。

(1)原始数据预处理X=(xij)N×M处理为Z=(zij)N×M,分3种处理方法:1)衬度;2)标准化;3)归一化。程序默认用归一化处理。

(2)构造Kohonen网竞争层与输入层之间的神经元的连接权值构成矩阵WQ×M。WQ×M初始化。(3)进入Kohonen网学习分类循环,用epoch记录循环次数,epoch=1。

(4)在每个epoch循环中,对每个样品n(n=1,2,…,N)进行分类。从1个样品n=1开始。

(5)首先计算输入层的样品n的输入数据znm(m=1,2,…,M)与竞争层Q个神经元对应权值wqm的距离。

(6)寻找输入层的样品n与竞争层Q个神经元的最小距离,距离最小的神经元Win[n]为获胜神经元,将样品n归入获胜神经元Win[n]所代表的类型中,从而实现对样品n的分类。

(7)对样品集中的每一个样品进行分类:n=n+1。(如果n≤N,转到5。否则,转到8。

)(8)求分类后各神经元所对应的样品的变量的重心,用对应的样品的变量的中位数作为重心,用对应的样品的变量的重心来更新各神经元的连接权值。(9)epoch=epoch+1;一次学习分类循环结束。

(10)如果满足下列两个条件之一,分类循环结束,转到11;否则,分类循环继续进行,转到4。1)全部样品都固定在某个神经元上,不再改变了;2)学习分类循环达到最大迭代次数。

(11)输出:1)N个样品共分成多少类,每类多少样品,记录每类的样品编号;2)如果某类中样品个数超过1个,则输出某类的样品原始数据的每个变量的均值、最小值、最大值和均方差;3)如果某类中样品个数为1个,则输出某类的样品原始数据的各变量值;4)输出原始数据每个变量(j=1,2,…,M)的均值,最小值,最大值和均方差。

(12)结束。七、无模式识别总体算法流程图Kohonen无模式总体算法流程图见附图5。

神经网络BP模型

一、BP模型概述误差逆传播(Error Back-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。

Pall Werbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。

他们在1986年出版“Parallel Distributed Processing,Explorations in the Microstructure of Cognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。

BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。

网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。

在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。

随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。

BP网络主要应用于以下几个方面:1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;3)分类:把输入模式以所定义的合适方式进行分类;4)数据压缩:减少输出矢量的维数以便于传输或存储。

在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。

二、BP模型原理下面以三层BP网络为例,说明学习和应用的原理。

1.数据定义P对学习模式(xp,dp),p=1,2,…,P;输入模式矩阵X[N][P]=(x1,x2,…,xP);目标模式矩阵d[M][P]=(d1,d2,…,dP)。

三层BP网络结构输入层神经元节点数S0=N,i=1,2,…,S0;隐含层神经元节点数S1,j=1,2,…,S1;神经元激活函数f1[S1];权值矩阵W1[S1][S0];偏差向量b1[S1]。

输出层神经元节点数S2=M,k=1,2,…,S2;神经元激活函数f2[S2];权值矩阵W2[S2][S1];偏差向量b2[S2]。

学习参数目标误差?;初始权更新值Δ0;最大权更新值Δmax;权更新值增大倍数η+;权更新值减小倍数η-。

2.误差函数定义对第p个输入模式的误差的计算公式为中国矿产资源评价新技术与评价新模型y2kp为BP网的计算输出。

3.BP网络学习公式推导BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。

各层输出计算公式输入层y0i=xi,i=1,2,…,S0;隐含层中国矿产资源评价新技术与评价新模型y1j=f1(z1j),j=1,2,…,S1;输出层中国矿产资源评价新技术与评价新模型y2k=f2(z2k),k=1,2,…,S2。

输出节点的误差公式中国矿产资源评价新技术与评价新模型对输出层节点的梯度公式推导中国矿产资源评价新技术与评价新模型E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。

其中中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型设输出层节点误差为δ2k=(dk-y2k)·f2′(z2k),则中国矿产资源评价新技术与评价新模型同理可得中国矿产资源评价新技术与评价新模型对隐含层节点的梯度公式推导中国矿产资源评价新技术与评价新模型E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。

因此,上式只存在对k的求和,其中中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型设隐含层节点误差为中国矿产资源评价新技术与评价新模型则中国矿产资源评价新技术与评价新模型同理可得中国矿产资源评价新技术与评价新模型4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb1993年德国 Martin Riedmiller和Heinrich Braun 在他们的论文“A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm”中,提出Resilient Backpropagation算法——弹性BP算法(RPROP)。

这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。

权改变的大小仅仅由权专门的“更新值” 确定中国矿产资源评价新技术与评价新模型其中 表示在模式集的所有模式(批学习)上求和的梯度信息,(t)表示t时刻或第t次学习。

权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。中国矿产资源评价新技术与评价新模型RPROP算法是根据局部梯度信息实现权步的直接修改。

对于每个权,我们引入它的各自的更新值 ,它独自确定权更新值的大小。

这是基于符号相关的自适应过程,它基于在误差函数E上的局部梯度信息,按照以下的学习规则更新中国矿产资源评价新技术与评价新模型其中0<η-<1<η+。

在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值 应由权更新值减小倍数因子η-得到减少;如果目标函数的梯度保持它的符号,更新值应由权更新值增大倍数因子η+得到增大。

为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η–被设置到固定值η+=1.2,η-=0.5,这两个值在大量的实践中得到了很好的效果。

RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。

为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为Δmax=50.0。在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如Δmax=1.0。

我们可能达到误差减小的平滑性能。5.计算修正权值W、偏差b第t次学习,权值W、偏差b的的修正公式W(t)=W(t-1)+ΔW(t),b(t)=b(t-1)+Δb(t),其中,t为学习次数。

6.BP网络学习成功结束条件每次学习累积误差平方和中国矿产资源评价新技术与评价新模型每次学习平均误差中国矿产资源评价新技术与评价新模型当平均误差MSE<ε,BP网络学习成功结束。

7.BP网络应用预测在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。

8.神经元激活函数f线性函数f(x)=x,f′(x)=1,f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。一般用于输出层,可使网络输出任何值。

S型函数S(x)中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围(0,1)。f′(x)=f(x)[1-f(x)],f′(x)的输入范围(-∞,+∞),输出范围(0, ]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。双曲正切S型函数中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围(-1,1)。

f′(x)=1-f(x)·f(x),f′(x)的输入范围(-∞,+∞),输出范围(0,1]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

阶梯函数类型1中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围{0,1}。f′(x)=0。

类型2中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围{-1,1}。f′(x)=0。

斜坡函数类型1中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围[0,1]。中国矿产资源评价新技术与评价新模型f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

类型2中国矿产资源评价新技术与评价新模型f(x)的输入范围(-∞,+∞),输出范围[-1,1]。中国矿产资源评价新技术与评价新模型f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

三、总体算法1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵 Xmax[N],Xmin[N];(3)隐含层的权值W1,偏差b1初始化。

情形1:隐含层激活函数f( )都是双曲正切S型函数1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9))输出W1[S1][S0],b1[S1]。

情形2:隐含层激活函数f( )都是S型函数1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9)输出W1[S1][S0],b1[S1]。

情形3:隐含层激活函数f( )为其他函数的情形1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];2)计算输入模式X的每个变量的范围均值向量Xmid[N];3)计算W,b的幅度因子Wmag;4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];6)计算W[S1][S0],b[S1];7)计算隐含层的初始化权值W1[S1][S0];8)计算隐含层的初始化偏差b1[S1];9)输出W1[S1][S0],b1[S1]。

(4)输出层的权值W2,偏差b2初始化1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];3)输出W2[S2][S1],b2[S2]。

2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)(1)输入参数P对模式(xp,dp),p=1,2,…,P;三层BP网络结构;学习参数。

(2)学习初始化1) ;2)各层W,b的梯度值 , 初始化为零矩阵。

(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE(4)进入学习循环epoch=1(5)判断每次学习误差是否达到目标误差要求如果MSE<?,则,跳出epoch循环,转到(12)。

(6)保存第epoch-1次学习产生的各层W,b的梯度值 , (7)求第epoch次学习各层W,b的梯度值 , 1)求各层误差反向传播值δ;2)求第p次各层W,b的梯度值 , ;3)求p=1,2,…,P次模式产生的W,b的梯度值 , 的累加。

(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值 , 设为第epoch次学习产生的各层W,b的梯度值 , 。

(9)求各层W,b的更新1)求权更新值Δij更新;2)求W,b的权更新值 , ;3)求第epoch次学习修正后的各层W,b。

(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE(11)epoch=epoch+1,如果epoch≤MAX_EPOCH,转到(5);否则,转到(12)。

(12)输出处理1)如果MSE<ε,则学习达到目标误差要求,输出W1,b1,W2,b2。2)如果MSE≥ε,则学习没有达到目标误差要求,再次学习。

(13)结束3.三层BP网络(含输入层,隐含层,输出层)预测总体算法首先应用Train3lBP_RPROP( )学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。

函数:Simu3lBP( )。1)输入参数:P个需预测的输入数据向量xp,p=1,2,…,P;三层BP网络结构;学习得到的各层权值W、偏差b。

2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出 y2[S2][P],输出预测结果y2[S2][P]。四、总体算法流程图BP网络总体算法流程图见附图2。

五、数据流图BP网数据流图见附图1。

六、实例实例一 全国铜矿化探异常数据BP 模型分类1.全国铜矿化探异常数据准备在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。

2.模型数据准备根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。

这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。3.测试数据准备全国化探数据作为测试数据集。

4.BP网络结构隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。表8-1 模型数据表续表5.计算结果图如图8-2、图8-3。

图8-2图8-3 全国铜矿矿床类型BP模型分类示意图实例二 全国金矿矿石量品位数据BP 模型分类1.模型数据准备根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。

2.测试数据准备模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。3.BP网络结构输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。

表8-2 模型数据4.计算结果结果见表8-3、8-4。表8-3 训练学习结果表8-4 预测结果(部分)续表。

卷积神经网络能用于参数预测吗

卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。

2、基于卷积网络的人脸检测卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。

它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。

3、文字识别系统在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。

然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

哪些原理会影响三维重建的图像质量

三维重建基于所谓的三角原理。

对于已经定标的两幅图像(即已知相机的内部参数和外部参数),假设在两幅图像上,对应点是一对(也就是说是同一点场景物体表面的投影),则基于两幅图像的投影中心,两条直线经过该一对对应点,最终在空间中汇聚于一点,如此,就提供了场景物体表面中某点的三维立体坐标。

将两幅图像作为例子,指定在同一世界坐标系下这两幅图像的相机矩阵P和P', 是两幅图像的一个对应点,即它们满足对极几何约束,现在要根据P和P'计算点对应的空间点。

m的反投影线与的反投影线 确定了通过两相机光心的平面一张,不平行的两条射线,必在空间一点交汇。

也即对应点的反投影射线,及其两个相机的基线,是一个三角形,相机的光心和反投影线的交点作为其顶点,要确定的空间点就是交点,如图4.1 所示。

图4.1 三维重建原理有一种例外情况是,三维空间中,分布在两个相机基线上的点,对应点不会完成它的恢复任务,这是由于该情况下,反投影的两条射线重合了基线,故不能唯一确定空间点。

4.2 MVSNetMVS是一种从具有一定重叠度的多视图视角中恢复场景的稠密结构的技术,传统方法利用几何、光学一致性构造匹配代价,进行匹配代价累积,再估计深度值。

虽然传统方法有较高的深度估计精度,但由于存在缺少纹理或者光照条件剧烈变化的场景中的错误匹配,传统方法的深度估计完整度还有很大的提升空间。

近年来卷积神经网络已经成功被应用在特征匹配上,提升了立体匹配的精度。在这样的背景下,香港科技大学Yaoyao等人,在2018年提出了一种基于深度学习的端到端深度估计框架——MVSNet。

多视图立体匹配(Multi-view Stereo, MVS)是计算机领域中一个核心问题。重建多视图立体匹配,可以认为是拍摄既定场景的一个逆过程。

相机映射下,三维场景变换为二维,而多视图立体匹配重建正好相反,其从这样子。不同视点拍摄图像,恢复出真实的三维场景。

传统的方法使用手工设计的相似性度量指标和正则化方法计算场景的稠密对应关系(比如使用归一化互相关Normalized Cross-Correlation和半全局匹配semi-global matching)。

这些方法在非朗伯体表面、无弱纹理区域的场景可以达到很好的效果。但是在弱纹理区域,人工设计的相似性指标变得不可信,因此导致重建结果不完整。

由MVS数据集的排行榜可知,这些方法具有很高的精度,然而在重建的完整度方法还有很大的空间可以提升。卷积神经网络的研究的最新进展引发了人们完善立体匹配重建热情。

从概念看,基于学习算法能够捕获全局的语义信息,比如基于高光和反射的先验条件,便于得到更加稳健的匹配。目前已经探求一些两视图立体匹配,用神经网络替换手工设计的相似性度量或正则化方法。

这些方法展现出更好的结果,并且逐步超过立体匹配领域的传统方法。事实上,立体匹配任务完全适合使用CNN,因为图像对是已经过修正过的,因此立体匹配问题转化为水平方向上逐像素的视差估计。

matlab BP神经网络 performance 图这五条线的详细解释

图上的三个彩色实线分别是:每一代BP训练过程的MSE指标的性能,每一代BP交叉验证过程的MSE指标的性能以及BP测试的MSE指标在每一代中执行的过程。

特别是,应该注意内部的TEST红线,这是BP计算/训练结果。BEST虚线表示当BP网络被训练到第八代时,BP训练结果是最佳的。

GOAL虚线是在编程或直接使用MATLAB的ANN工具箱训练此BP时设置的网络容量训练停止目标(一个)。

扩展资料:BP(Back Propagation)神经网络是由Rumelhart和McCelland领导的一组科学家于1986年提出的。

BP(Back Propagation)是由反向传播误差反向传播算法训练的多层前馈网络,是使用最广泛的神经网络模型之一。

BP网络可以学习并存储大量的输入-输出模式映射关系,而无需事先揭示描述这些映射关系的数学方程式。

BP网络的学习规则是使用最速下降法,并通过反向传播来不断调整网络的权重和阈值,以最小化网络的平方误差之和。 BP神经网络模型的拓扑包括输入层,隐藏层和输出层。

?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-09-30 00:52:59  更:2022-09-30 00:53:57 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 22:56:29-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码