IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> DETR源码阅读 -> 正文阅读

[人工智能]DETR源码阅读

前言

本文主要是自己在阅读mmdet中DETR的源码时的一个记录,如有错误或者问题,欢迎指正
参考文章:DETR源码阅读

原理介绍

在这里插入图片描述
DETR的原理非常简单,将输入的图像首先经过一个CNN的backbone,得到feature map,DETR这里没有采用多尺度的特征图,因此输出的feature map只有一张。然后对feature map拉平加上postional encoding之后,送入到标准的transformer encoder,经过transformer encoder后,进入decoder学习object query;最后经过预测头预测出框和类别。

代码阅读

前面train_pipeline中对数据的处理我们暂且先不看,直接进入到模型的主体部分。

提取feature map

首先进入到SingleStageDetector中,代码在mmdet/models/detectors/single_stage.py中,代码如下:

    def forward_train(self,
                      img,
                      img_metas,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None):
        """
        Args:
            img (Tensor): Input images of shape (N, C, H, W).
                Typically these should be mean centered and std scaled.
            img_metas (list[dict]): A List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                :class:`mmdet.datasets.pipelines.Collect`.
            gt_bboxes (list[Tensor]): Each item are the truth boxes for each
                image in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): Class indices corresponding to each box
            gt_bboxes_ignore (None | list[Tensor]): Specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        super(SingleStageDetector, self).forward_train(img, img_metas)
        x = self.extract_feat(img) 
        losses = self.bbox_head.forward_train(x, img_metas, gt_bboxes,
                                              gt_labels, gt_bboxes_ignore)
        return losses

首先通过x = self.extract_feat(img)提前feature map,这里是用的resnet,并且只输出最后一层的feature map。然后进入到self.bbox_head.forward_train中,也就是DETRHead的forward_train中。

DETRHead.forward_single()

在进入到DETRHead的forward_train之后,通过下面的代码来计算模型的前向过程的输出

   outs = self(x, img_metas)

此时程序跳转到了DETRHead中的forward函数中,代码如下:

  def forward(self, feats, img_metas):
        """Forward function.
       """
        num_levels = len(feats)
        img_metas_list = [img_metas for _ in range(num_levels)]
        return multi_apply(self.forward_single, feats, img_metas_list)

这里面通过multi_apply函数多次调用self.forward_single,来对每一个feature level进行前向过程,这里面由于feature map只有一层,故其实forward_single只执行了一次。
下面程序就进入到了forward_single中

生成mask矩阵

代码如下:

		batch_size = x.size(0)
        input_img_h, input_img_w = img_metas[0]['batch_input_shape']
        masks = x.new_ones((batch_size, input_img_h, input_img_w))
        for img_id in range(batch_size):
            img_h, img_w, _ = img_metas[img_id]['img_shape']
            masks[img_id, :img_h, :img_w] = 0

        x = self.input_proj(x)
        # interpolate masks to have the same spatial shape with x
        masks = F.interpolate(
            masks.unsqueeze(1), size=x.shape[-2:]).to(torch.bool).squeeze(1)

所谓的mask就是为了统一批次大小而对图像进行了pad,被填充的部分在后续计算多头注意力时应该舍弃,故需要一个mask矩阵遮挡住,具体形状为[batch, input_img_h, input_img_w]。input_img_h, input_img_w是pad后的尺寸img_h, img_w是原图尺寸。

mask矩阵中0代表有效区域,1代表pad的区域

x = self.input_proj(x)

self.input_proj是一个输入通道为2048,输出通道为256的1*1的卷积核,这行代码是改变了x的channel数
在这里插入图片描述
注意此时的mask的尺寸是原图大小的;而输入图像的经过resnet50下采样后尺寸已经变了,所以还需进一步将mask通过F.interpolate函数下采样成和图像feature map一样的尺寸

# interpolate masks to have the same spatial shape with x
        masks = F.interpolate(
            masks.unsqueeze(1), size=x.shape[-2:]).to(torch.bool).squeeze(1)

mask.shape前后对比

生成positional_encoding

在DETRHead的forward_single()中,通过下面这行代码生成positional_encoding

pos_embed = self.positional_encoding(masks)

这里的采用的是SinePositionalEncoding,具体代码在mmdet/models/utils/positional_encoding.py中,这里不做过多介绍,最终得到到pos_embed的shape为[bs, embed_dim, h, w]

进入transformer

在DETRHead的forward_single()中,通过下面这行代码进入到transformer中

 # outs_dec: [nb_dec, bs, num_query, embed_dim]
outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight,
                                       pos_embed)

代码进入到mmdet/models/utils/transformer.py的Transformer类的forward中,首先做一些进入transformer中的准备工作,将feature map等都拉平,然后再送入transformer中

        bs, c, h, w = x.shape
        # use `view` instead of `flatten` for dynamically exporting to ONNX
        # 将feature map拉平
        x = x.view(bs, c, -1).permute(2, 0, 1)  # [bs, c, h, w] -> [h*w, bs, c] 
        # 将pos_embed也拉平  [bs,c,h,w] -> [h*w, bs, c] 
        pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1)
        # 将query_embed复制bs份
        query_embed = query_embed.unsqueeze(1).repeat(
            1, bs, 1)  # [num_query, dim] -> [num_query, bs, dim]
        # 将mask拉平
        mask = mask.view(bs, -1)  # [bs, h, w] -> [bs, h*w]

encoder

通过下面的代码进入到encoder中,

memory = self.encoder(
            query=x,
            key=None,
            value=None,
            query_pos=pos_embed,
            query_key_padding_mask=mask)

encoder中的Q就是拉平后的feature map,query_pos=pos_embed K和V都是None,在调用mmcv\cnn\bricks\transformer.py中进行计算时,代码中有一句

temp_key = temp_value = query

也就是说,在encoder中进行self atten时,QKV都是一样的,都是拉平后的feature map

在经过encoder之后,return后的memory其实就是经过encoder的feature map,其shape和输入进去的query一样,都是[h*w,bs,embed_dims]

decoder

        target = torch.zeros_like(query_embed)
        # out_dec: [num_layers, num_query, bs, dim]
        out_dec = self.decoder(
            query=target,
            key=memory,
            value=memory,
            key_pos=pos_embed,
            query_pos=query_embed,
            key_padding_mask=mask)
        out_dec = out_dec.transpose(1, 2)
        memory = memory.permute(1, 2, 0).reshape(bs, c, h, w)

这里先初始化了一个全0的target作为query,是因为后面在进行多头注意力时候,会把query和query_pos相加,这样就相当于加回去了

返回的out_dec的shape为[6,100,2,256]也就是[num_dec_layers, num_query,bs, embed_dims]

整个transformer的顺序是这样的:

		bs, c, h, w = x.shape
        # use `view` instead of `flatten` for dynamically exporting to ONNX
        x = x.view(bs, c, -1).permute(2, 0, 1)  # [bs, c, h, w] -> [h*w, bs, c]
        pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1)
        query_embed = query_embed.unsqueeze(1).repeat(
            1, bs, 1)  # [num_query, dim] -> [num_query, bs, dim]
        mask = mask.view(bs, -1)  # [bs, h, w] -> [bs, h*w]
        memory = self.encoder(
            query=x,
            key=None,
            value=None,
            query_pos=pos_embed,
            query_key_padding_mask=mask)
        target = torch.zeros_like(query_embed)
        # out_dec: [num_layers, num_query, bs, dim]
        out_dec = self.decoder(
            query=target,
            key=memory,
            value=memory,
            key_pos=pos_embed,
            query_pos=query_embed,
            key_padding_mask=mask)
        out_dec = out_dec.transpose(1, 2)
        memory = memory.permute(1, 2, 0).reshape(bs, c, h, w)
        return out_dec, memory

前面先做进入transformer的准备工作,然后经过encoder和decoder,最后returnd的outs_dec其实就是更新过的query,memory相当于是经过encoder后的feature map。

走完transformer之后,程序就返回到了DETRHead的forward_single()中,通过返回的outs_dec来进行分类和回归的预测。

预测

在DETRHead的forward_single()中,通过

 outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight,
                                       pos_embed)

        all_cls_scores = self.fc_cls(outs_dec)
        all_bbox_preds = self.fc_reg(self.activate(
            self.reg_ffn(outs_dec))).sigmoid()

得到的all_cls_scores和all_bbox_preds shape分别为 [num_layer,bs,num_query,81]和 [num_layer,bs,num_query,4]

Loss

在得到前向的预测结果之后,下面就是要进行匈牙利匹配以及计算loss。
计算Loss的整个函数调用的逻辑是这样的:首先进入DETRHead的loss()函数中,在loss函数中,会通过multi_apply函数调用loss_single来计算每一个decoder layer的loss,在loss_single中会调用get_targets()来获得这一个batch图片的targets,在get_targets()中会调用_get_target_single()来获得batch中每张图片的targets,并且在_get_target_single()中会进行匈牙利匹配

我们直接进入到_get_target_single()中,在_get_target_single(),首先会进行匈牙利匹配,先看一下匈牙利匹配的代码,这部分代码在mmdet/core/bbox/assigners/hungarian_assigner.py下,注释写在代码中了

    def assign(self,bbox_pred,cls_pred,gt_bboxes,gt_labels,img_meta,gt_bboxes_ignore=None,eps=1e-7):
  
        assert gt_bboxes_ignore is None, \
            'Only case when gt_bboxes_ignore is None is supported.'
        num_gts, num_bboxes = gt_bboxes.size(0), bbox_pred.size(0)

        # 1. assign -1 by default
        assigned_gt_inds = bbox_pred.new_full((num_bboxes, ),
                                              -1,
                                              dtype=torch.long)
        assigned_labels = bbox_pred.new_full((num_bboxes, ),
                                             -1,
                                             dtype=torch.long)
        if num_gts == 0 or num_bboxes == 0:
            # No ground truth or boxes, return empty assignment
            if num_gts == 0:
                # No ground truth, assign all to background
                assigned_gt_inds[:] = 0
            return AssignResult(
                num_gts, assigned_gt_inds, None, labels=assigned_labels)
        img_h, img_w, _ = img_meta['img_shape']
        factor = gt_bboxes.new_tensor([img_w, img_h, img_w,
                                       img_h]).unsqueeze(0)

        # 2. compute the weighted costs
        # classification and bboxcost.
        '''
        cls_pred.shape : [100,81]
        gt_labels :[5]
        '''
        cls_cost = self.cls_cost(cls_pred, gt_labels) 
        # regression L1 cost
        # 因为预测出的bbox_pred是在0-1之间,因此算reg_cost之前需要把gt_bboxes转换到0-1尺度
        normalize_gt_bboxes = gt_bboxes / factor
        reg_cost = self.reg_cost(bbox_pred, normalize_gt_bboxes)
        # regression iou cost, defaultly giou is used in official DETR.
        # 转回原图尺度再计算iou_cost
        bboxes = bbox_cxcywh_to_xyxy(bbox_pred) * factor
        iou_cost = self.iou_cost(bboxes, gt_bboxes)
        # weighted sum of above three costs
        # cost.shape  [100,5]   因为这里是100个预测框对5个gt
        cost = cls_cost + reg_cost + iou_cost

        # 3. do Hungarian matching on CPU using linear_sum_assignment
        cost = cost.detach().cpu()
        if linear_sum_assignment is None:
            raise ImportError('Please run "pip install scipy" '
                              'to install scipy first.')
        matched_row_inds, matched_col_inds = linear_sum_assignment(cost)
        matched_row_inds = torch.from_numpy(matched_row_inds).to(
            bbox_pred.device)
        matched_col_inds = torch.from_numpy(matched_col_inds).to(
            bbox_pred.device)

        # 4. assign backgrounds and foregrounds
        # assign all indices to backgrounds first
        assigned_gt_inds[:] = 0
        # assign foregrounds based on matching results
        assigned_gt_inds[matched_row_inds] = matched_col_inds + 1
        assigned_labels[matched_row_inds] = gt_labels[matched_col_inds]
        return AssignResult(
            num_gts, assigned_gt_inds, None, labels=assigned_labels)

返回到_get_target_single()之后,这时以及匹配好了正负样本,将匹配的结果整理后返回即可,_get_target_single()返回的是一个元组**(labels, label_weights, bbox_targets, bbox_weights, pos_inds,neg_inds)**
labels:是预测出的100个框的类别,这里已经匹配好了,大部分为背景类
在这里插入图片描述
label_weights:是每个label的权重,这里都是1
bbox_targets是预测出框的位置,这里也是匹配好的,只有gt个框的值为预测值,其余全是0
bbox_weights是框的权重,这里与gt匹配的框的值为1,其余全为0
pos_inds是正样本的索引,neg_inds是负样本的索引。

在执行batch_size次_get_target_single()之后,代码返回到get_target()中,get_target()将这一个batch的label和bbox返回到loss_single()当中

   def loss_single(self,
                    cls_scores,
                    bbox_preds,
                    gt_bboxes_list,
                    gt_labels_list,
                    img_metas,
                    gt_bboxes_ignore_list=None):
                    
 		num_imgs = cls_scores.size(0)
        cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
        bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)]
        cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
                                           gt_bboxes_list, gt_labels_list,
                                           img_metas, gt_bboxes_ignore_list)
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets
        # 将不同batch的结果cat在一起
        labels = torch.cat(labels_list, 0)    #[bs*num_query]
        label_weights = torch.cat(label_weights_list, 0)  #[bs*num_query]
        bbox_targets = torch.cat(bbox_targets_list, 0)   #[bs*num_query,4]
        bbox_weights = torch.cat(bbox_weights_list, 0)   #[bs*num_query,4]

        # classification loss
        # self.cls_out_channels:81
        cls_scores = cls_scores.reshape(-1, self.cls_out_channels)  # [bs*num_query,81]
        # construct weighted avg_factor to match with the official DETR repo
        cls_avg_factor = num_total_pos * 1.0 + \
            num_total_neg * self.bg_cls_weight
        if self.sync_cls_avg_factor:
            cls_avg_factor = reduce_mean(
                cls_scores.new_tensor([cls_avg_factor]))
         # cls_avg_factor的作用:Average factor that is used to average the loss
        cls_avg_factor = max(cls_avg_factor, 1)
		# self.loss_cls: CrossEntropyLoss()
        loss_cls = self.loss_cls(
            cls_scores, labels, label_weights, avg_factor=cls_avg_factor)

        # Compute the average number of gt boxes across all gpus, for
        # normalization purposes
        num_total_pos = loss_cls.new_tensor([num_total_pos])
        num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()

        # construct factors used for rescale bboxes
        # 计算一个batch中每张图的放缩因子
        factors = []
        for img_meta, bbox_pred in zip(img_metas, bbox_preds):
            img_h, img_w, _ = img_meta['img_shape']
            factor = bbox_pred.new_tensor([img_w, img_h, img_w,
                                           img_h]).unsqueeze(0).repeat(
                                               bbox_pred.size(0), 1)
            factors.append(factor)
        factors = torch.cat(factors, 0)  # [bs*num_query,4]

        # DETR regress the relative position of boxes (cxcywh) in the image,
        # thus the learning target is normalized by the image size. So here
        # we need to re-scale them for calculating IoU loss
        # 计算iou_loss需要在原图尺寸上进行,同时编码方式为xyxy 
        bbox_preds = bbox_preds.reshape(-1, 4)
        bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
        bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors

        # regression IoU loss, defaultly GIoU loss
        loss_iou = self.loss_iou(
            bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)

        # regression L1 loss
        # 计算l1 loss在0-1尺度上进行,编码方式为[x,y,w,h]
        loss_bbox = self.loss_bbox(
            bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
        return loss_cls, loss_bbox, loss_iou

loss_single()函数会执行6次,因为是对每一个decoder layer都计算loss,但是实际最后需要进行梯度回传的loss只有最后一个decoder的
最后回到loss函数中,其实就是将loss进行整理并返回loss_dict

losses_cls, losses_bbox, losses_iou = multi_apply(
            self.loss_single, all_cls_scores, all_bbox_preds,
            all_gt_bboxes_list, all_gt_labels_list, img_metas_list,
            all_gt_bboxes_ignore_list)

        loss_dict = dict()
        # loss from the last decoder layer
        loss_dict['loss_cls'] = losses_cls[-1]
        loss_dict['loss_bbox'] = losses_bbox[-1]
        loss_dict['loss_iou'] = losses_iou[-1]
        # loss from other decoder layers
        num_dec_layer = 0
        for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1],
                                                       losses_bbox[:-1],
                                                       losses_iou[:-1]):
            loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
            loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
            loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i
            num_dec_layer += 1
        return loss_dict

计算完Loss之后,后面就是梯度回传,更新参数,然后进行下一次前向过程了

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-08 20:42:06  更:2022-10-08 20:42:35 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/25 20:31:56-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码