IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 第3章 PyTorch神经网络工具箱(2/2) -> 正文阅读

[人工智能]第3章 PyTorch神经网络工具箱(2/2)

3.4 训练模型

构建模型(假设为model)后,接下来就是训练模型。PyTorch训练模型主要包括加载数据集、损失计算、定义优化算法、反向传播、参数更新等主要步骤。
1.加载预处理数据集
加载和预处理数据集,可以使用PyTorch的数据处理工具,如torch.utils和torchvision等,这些工具将在第4章详细介绍。
2.定义损失函数
定义损失函数可以通过自定义方法或使用PyTorch内置的损失函数,如回归使用的losss_fun=nn.MSELoss(),分类使用的nn.BCELoss等损失函数,更多内容可参考本书5.2.4节。
3.定义优化方法
Pytoch常用的优化方法都封装在torch.optim里面,其设计很灵活,可以扩展为自定义的优化方法。所有的优化方法都是继承了基类optim.Optimizer,并实现了自己的优化步骤。
最常用的优化算法就是梯度下降法及其各种变种,具体将在5.4节详细介绍,这些优化算法大多使用梯度更新参数。
如使用SGD优化器时,可设置为optimizer = torch.optim.SGD(params,lr = 0.001)。
4.循环训练模型
1)设置为训练模式:
model.train()
调用model.train()会把所有的module设置为训练模式。
2)梯度清零:
optimizer. zero_grad()
在默认情况下梯度是累加的,需要手工把梯度初始化或清零,调用optimizer.zero_grad() 即可。
3)求损失值:
y_prev=model(x)
loss=loss_fun(y_prev,y_true)
4)自动求导,实现梯度的反向传播:
loss.backward()
5)更新参数:
optimizer.step()
5.循环测试或验证模型
1)设置为测试或验证模式:
model.eval()
调用model.eval()会把所有的training属性设置为False。
2)在不跟踪梯度模式下计算损失值、预测值等:
with.torch.no_grad():
6.可视化结果
下面我们通过实例来说明如何使用nn来构建网络模型、训练模型。
【说明】model.train()与model.eval()的使用
如果模型中有BN (Batch Normalization)层和Dropout,需要在训练时添加model.train(),
在测试时添加model.eval()。其中model.train()是保证BN层用每一批数据的均值和方差,而model.eval()是保证BN用全部训练数据的均值和方差;而对于Dropout,model.train()是随机取一部分网络连接来训练更新参数,而model.eval()是利用到了所有网络连接。

3.5实现神经网络实例

前面我们介绍了使用PyTorch构建神经网络的一些组件、常用方法和主要步骤等,本节通过一个构建神经网络的实例把这些内容有机结合起来。

3.5.1背景说明

本节将利用神经网络完成对手写数字进行识别的实例,来说明如何借助nn工具箱来实现一个神经网络,并对神经网络有个直观了解。在这个基础上,后续我们将对nn的各模块进行详细介绍。实例环境使用PyTorch1.5+,GPU或CPU,源数据集为MNIST。
主要步骤如下。
? 利用PyTorch内置函数mnist下载数据。
? 利用torchvision对数据进行预处理,调用torch.utils建立一个数据迭代器。
? 可视化源数据。
? 利用nn工具箱构建神经网络模型。
? 实例化模型,并定义损失函数及优化器。
? 训练模型。
? 可视化结果。
神经网络的结构如图3-5所示。

?图3-5 神经网络结构图
使用两个隐含层,每层使用ReLU激活函数,输出层使用softmax激活函数,最后使用torch.max(out,1)找出张量out最大值对应索引作为预测值。

3.5.2准备数据

1)导人必要的模块。?

import numpy as np
import torch
# 导入 pytorch 内置的 mnist 数据
from torchvision.datasets import mnist 
#导入预处理模块
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
#导入nn及优化器
import torch.nn.functional as F
import torch.optim as optim
from torch import nn

2)定义一些超参数。

# 定义一些超参数
train_batch_size = 64
test_batch_size = 128
learning_rate = 0.01
num_epoches = 20
lr = 0.01
momentum = 0.5

?3)下载数据并对数据进行预处理。

#定义预处理函数
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5], [0.5])])
#下载数据,并对数据进行预处理
train_dataset = mnist.MNIST('../data/', train=True, transform=transform, download=False)
test_dataset = mnist.MNIST('../data/', train=False, transform=transform)
#得到一个生成器
train_loader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False)

【说明】
1) transforms.Compose可以把一些转换函数组合在一起。
2) Normalize([0.5], [0.5])对张量进行归一化,这里两个0.5分别表示对张量进行归一化的全局平均值和方差。因图像是灰色的只有一个通道,如果有多个通道,需要有多个数字,如三个通道,应该是Normalize([m1,m2,m3], [n1,n2,n3])。
3) download参数控制是否需要下载,如果./data目录下已有MNIST,可选择False。
4) 用DataLoader得到生成器,这可节省内存。
5) torchvision及data的使用第4章将详细介绍。

3.5.3可视化源数据

对数据集中部分数据进行可视化。

import matplotlib.pyplot as plt
%matplotlib inline
 
 
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
 
fig = plt.figure()
for i in range(6):
  plt.subplot(2,3,i+1)
  plt.tight_layout()
  plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
  plt.title("Ground Truth: {}".format(example_targets[i]))
  plt.xticks([])
  plt.yticks([])

运行结果如图3-6所示。

图3-6 MNIST源数据示例

3.5.4 构建模型

数据预处理之后,我们开始构建网络,创建模型。
1)构建网络。

class Net(nn.Module):
    """
    使用sequential构建网络,Sequential()函数的功能是将网络的层组合到一起
    """
    def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
        super(Net, self).__init__()
        self.flatten = nn.Flatten()
        self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1),nn.BatchNorm1d(n_hidden_1))
        self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2),nn.BatchNorm1d(n_hidden_2))
        self.out = nn.Sequential(nn.Linear(n_hidden_2, out_dim))
        
 
    def forward(self, x):
        x=self.flatten(x)
        x = F.relu(self.layer1(x))
        x = F.relu(self.layer2(x))
        x = F.softmax(self.out(x),dim=1)
        return x

?2)实例化网络。

#检测是否有可用的GPU,有则使用,否则使用CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#实例化网络
model = Net(28 * 28, 300, 100, 10)
model.to(device)
 
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)

3.5.5 训练模型

训练模型,这里使用for循环进行迭代。其中包括对训练数据的训练模型,然后用测试数据验证模型。
1)训练模型。

# 开始训练
losses = []
acces = []
eval_losses = []
eval_acces = []
writer = SummaryWriter(log_dir='logs',comment='train-loss')
 
for epoch in range(num_epoches):
    train_loss = 0
    train_acc = 0
    model.train()
    #动态修改参数学习率
    if epoch%5==0:
        optimizer.param_groups[0]['lr']*=0.9
        print("学习率:{:.6f}".format(optimizer.param_groups[0]['lr']))
    for img, label in train_loader:
        img=img.to(device)
        label = label.to(device)
        # 正向传播
        out = model(img)
        loss = criterion(out, label)
        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 记录误差
        train_loss += loss.item()
        # 保存loss的数据与epoch数值
        writer.add_scalar('Train', train_loss/len(train_loader), epoch)
        # 计算分类的准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / img.shape[0]
        train_acc += acc
        
    losses.append(train_loss / len(train_loader))
    acces.append(train_acc / len(train_loader))
    # 在测试集上检验效果
    eval_loss = 0
    eval_acc = 0
    #net.eval() # 将模型改为预测模式
    model.eval()
    for img, label in test_loader:
        img=img.to(device)
        label = label.to(device)
        img = img.view(img.size(0), -1)
        out = model(img)
        loss = criterion(out, label)
        # 记录误差
        eval_loss += loss.item()
        # 记录准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / img.shape[0]
        eval_acc += acc
        
    eval_losses.append(eval_loss / len(test_loader))
    eval_acces.append(eval_acc / len(test_loader))
    print('epoch: {}, Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'
          .format(epoch, train_loss / len(train_loader), train_acc / len(train_loader), 
                     eval_loss / len(test_loader), eval_acc / len(test_loader)))

?最后5次迭代的结果如下:
学习率:0.006561
epoch: 15, Train Loss: 1.4681, Train Acc: 0.9950, Test Loss: 1.4801, Test Acc: 0.9830
epoch: 16, Train Loss: 1.4681, Train Acc: 0.9950, Test Loss: 1.4801, Test Acc: 0.9833
epoch: 17, Train Loss: 1.4673, Train Acc: 0.9956, Test Loss: 1.4804, Test Acc: 0.9826
epoch: 18, Train Loss: 1.4668, Train Acc: 0.9960, Test Loss: 1.4798, Test Acc: 0.9835
epoch: 19, Train Loss: 1.4666, Train Acc: 0.9962, Test Loss: 1.4795, Test Acc: 0.9835
这个神经网络的结构比较简单,只用了两层,也没有使用dropout层,迭代20次,测试准确率达到98%左右,效果还可以。不过,还是有提升空间,如果采用cnn,dropout等层,应该还可以提升模型性能。
2)可视化训练及测试损失值。

plt.title('train loss')
plt.plot(np.arange(len(losses)), losses)
plt.legend(['Train Loss'], loc='upper right')

运行结果如图3-7所示。

图3-7 MNIST数据集训练的损失值

3.6 小结

本章我们首先介绍了神经网络的核心组件,即层、模型、损失函数及优化器。然后,从一个完整实例开始,看PyTorch是如何使用其包、模块等来搭建、训练、评估、优化神经网络。最后详细剖析了PyTorch的工具箱nn以及基于nn的一些常用类或模块等,并用相关实例演示这些模块的功能。这章介绍了神经网络工具箱,下一章将介绍PyTorch的另一个强大工具箱,即数据处理工具箱。

?

?

?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-10-08 20:42:06  更:2022-10-08 20:45:16 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/29 7:47:57-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码